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Prisoner’s dilemma

Two persons are caught by the police and are accused of a crime
Each of them has two options:
— confess the crime, or

— remain silent

Every possible scenario (combination of actions of the two prisoners)
yields some payoff/cost for them:

— If both confess, they will go to prison for 3 years each
— If both remain silent, they will go to prison for only 1 year

— If one confesses and the other remains silent, then the former will
be set free and the latter will go to prison for 5 years
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Prisoner’s dilemma

We can represent their payoffs using a bi-matrix

confess silent

confess -3,-3 0, -5
silent -5,0 -1,-1

How does the row-prisoner think in order to find the best action?

In any case, confessing is the best action, and the same holds for the
column-prisoner due to symmetry

Confessing is a dominant strategy for both prisoners since, whatever
the other prisoner does, this action is always better
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Strategic games in general

A set of players
Each player has a set of possible strategies (actions)

Each state of the game (defined by a strategy per player) yields a
payoff (or utility) to each player

Given the strategies of the other players, each player aims to select its
strategy in order to maximize its utility

— Such a strategy is called a best response

A state consisting of best responses is stable, and called a pure Nash
equilibrium: no player would like to deviate and select a different
strategy



Back to prisoner’s dilemma

Players = the two prisoners
Strategies = {confess, silent}

Possible states = {(confess, confess), (confess, silent), (silent, confess),
(silent, silent)}

Utilities given by the bi-matrix: confess | silent
confess -3, -3 0, -5
silent -5,0 -1,-1

Confessing is a best response to any strategy of the other player

(confess, confess) is a pure Nash equilibrium of the game
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* Ifthe man chooses movie, then she also prefers movie (6 vs. 1)
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Battle of the sexes

man
sports movie
sports 3,6 1,1
woman :
movie 2,2 6,3

* Isthe state (sports, sports) an equilibrium?

* Yes, none of the two players has incentive to unilaterally change its
strategy:

— a deviation to movie would give utility 1 to the man and 2 to the
woman, compared to the utility of 6 and 3 they now get



Nash dynamics graph

An easy way to graphically find Nash equilibria
Built a graph containing a node per state

A directed edge between two nodes represents the fact that there
exists a player with a profitable unilateral deviation

A node with only incoming edges corresponds to an equilibrium state:
no player would like to deviate from there
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Battle of the sexes

man
sports movie
sports 3,6 1,1
woman :
movie 2,2 6,3
Man improves from 1 to 6
equilibrium — —
sports, sports sports, movie
Woman improves Woman improves
from2to3 from1to6
movie, sports movie, movie
— — equilibrium

Man improves from 2 to 3
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Chicken

column-driver

row-driver

chicken dare
chicken 0,0 -1,1
dare 1, -1 -10, -10

column improves from0to 1

=

chicken, chicken

row improves
from0Oto1l

dare, chicken

equilibrium

~
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dare, dare

/

column improves from-10to -1

equilibrium

row improves
from-10to-1
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Matching pennies

odd
heads tails
heads 1, -1 -1,1
even _
tails -1,1 1, -1
— =
heads, heads heads, tails
tails, heads tails, tails

~ -
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Mixed strategies

Not all games have pure equilibria
What if we allow the players to randomize over their strategies?

S; = set of pure strategies for player i

A mixed strategy for player i defines a probability p; (a) for each
strategy a € §; suchthat 2,5 pi(a) = 1

The game is at a state s = (54, Sy, ..., Sp) With probability

p($) = Pa(s0) P2 (52) o Pu (5u) = | | uCs)

The expected utility of player i is then

Eplui] = ) p(s) - ui(s)
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Matching pennies

odd
heads tails
heads 1, -1 -1,1 0.8
even _
tails -1,1 1, -1 0.2
0.4 0.6

p(heads, heads) = 0.8 - 0.4 = 0.32
p(heads, tails) = 0.8 - 0.6 = 0.48
p(tails, heads) = 0.2 - 0.4 = 0.08
p(tails, tails) = 0.2 - 0.6 = 0.12

Ep[ue] = 0.32-1+0.48-(=1) +0.08- (-=1) + 0.12- 1 = —0.12
E,[uo] = 032+ (1) + 0.48-1+0.08+1+0.12- (1) = 0.12
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Mixed equilibria

Mixed equilibrium: A profile of mixed strategies such that each player
maximizes its expected utility, given the strategies of the other
players

Theorem [Nash, 1951]

Every finite strategic game of n players has at least one mixed
equilibrium

Every pure equilibrium is also a mixed equilibrium

— Every pure strategy can be seen as a probability distribution over
all strategies that assigns probability 1 to this one pure strategy
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odd
heads tails
heads 1, -1 -1,1
even _
tails -1,1 1, -1

Even player selects heads with probability x and tails with 1 — x
Odd player selects heads with probability y and tails with 1 — y

p(heads, heads) = xy
p(heads, tails) = x(1 — y)
p(tails, heads) = (1 — x)y
p(tails, tails) = (1 —x)(1 —y)
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odd
heads tails
heads 1, -1 -1,1 X
even _
tails -1,1 1, -1 1—x
y 1-y

* [Ep [Ue]

=xy-1+x(1-y) - -D+A-x)y - D+A-x)A-y)-1
=4xy —2x —2y+1
=x(4y—-2)—-2y+1

* [Ep [uo]

=xy-(-D+x(1-y»)-1+(1-0)y- 1+ A -x)A-y)-(-1)
=y(2—-4x)+2x—-1
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Matching Pennies: mixed equilibria

Eylue] =x(4y —2) -2y +1
Eyluol =y(2—4x) +2x -1

The expected utility of each player is a linear function in terms of her
corresponding probability

To analyze how a player is going to act, we need to see whether the
slope of the linear function is negative or positive

Negative: the function is decreasing and the player aims to set a small
value for the probability

Positive: the function is increasing and the players aims to set a high
value for the probability
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Even player: the slope is 4y — 2 and it depends on y, the probability
with which the odd player selects heads
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Matching Pennies: mixed equilibria

Eylue]l =x(4y —2) — 2y +1
Eyluol =y(2—4x) +2x -1

It mustbey =1/2

Following the same reasoning for the odd player, we can see that it
mustalsobex = 1/2

For these values of x and y both slopes are equal to 0 and the linear
functions are maximized

The pair (x,y) = (1/2,1/2) corresponds to a mixed equilibrium,
which is actually unique for this game
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Unbalanced coordination

Two players with two possible strategies A and B

If both players select A, they get one point

If both of them select B, they get two points

If the select different strategies, they get zero points

col player
A B
A 1,1 0,0
row player 5 00 > o

Easy to verify that (A, A) and (B, B) are pure equilibria
Are there any other mixed equilibria?



Unbalanced coordination

col player
A B
A 1,1 0,0
row player B 00 5 5

row player selects A with probability x and Bwith 1 — x
col player selects A with probability yand Bwith 1 —y

p(A A) =xy

p(A,B) =x(1—-y)
p(B,A) =(1—x)y
p(B,B)=(1—-x)1—-y)



Unbalanced coordination

col player
A B
A 1,1 0,0 X
row player
B 0,0 2,2 1—x
y 1-y
* [Ep [ur]

=xy-1+x(1—-y)-0+(1—-—x)y-0+(1—x)(1—y)- -2
=x(3y—2)+2 -2y

* ]Ep [uC]

=xy-1+x(1—-y)- 0+ —x)y-0+(1—-—x)1—y)- 2
=y3Bx—-2)+2 -2y
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Unbalanced coordination

Eylur]l =x(By —2)+2 -2y
Eylucl =y(Bx —2)+2—2x

y<2/3
= the slope 3y — 2 of E, [ur] is negative
= the function E, [ur] is decreasing in x
= row player sets x = 0 to maximize E, [u]
= the slope 3x — 2 = —2 of E,, [uc] is negative
= the function E, [uc] is decreasing in y

= column player sets y = 0 to maximize E,|uc]

(x,y) = (0,0) is a mixed equilibrium
We already knew that: it corresponds to the pure equilibrium (A, A)
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= the slope 3y — 2 of E, [ur] is positive
= the function E,[ur] is increasing in x
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Unbalanced coordination

* Epfurl=x@By—2)+2-2y
Eylucl =y(Bx —2)+2—2x

e y>2/3
= the slope 3y — 2 of E, [ur] is positive
= the function E,[ur] is increasing in x
= row player sets x = 1 to maximize E, [u]
= the slope 3x — 2 = 1 of E, [uc] is positive

= the function E, [uc] isincreasing in y



Unbalanced coordination

* Epfurl=x@By—2)+2-2y
Eylucl =y(Bx —2)+2—2x

e y>2/3
= the slope 3y — 2 of E, [ur] is positive
= the function E,[ur] is increasing in x
= row player sets x = 1 to maximize E, [u]
= the slope 3x — 2 = 1 of E, [uc] is positive
= the function E, [uc] isincreasing in y

= column playersets y = 1 to maximize E,[uc]



Unbalanced coordination

* Epfurl=x@By—2)+2-2y
Eylucl =y(Bx —2)+2—2x

e y>2/3
= the slope 3y — 2 of E, [ur] is positive
= the function E,[ur] is increasing in x
= row player sets x = 1 to maximize E, [u]
= the slope 3x — 2 = 1 of E, [uc] is positive
= the function E, [uc] isincreasing in y

= column playersets y = 1 to maximize E,[uc]

* (x,y) =(1,1) is a mixed equilibrium corresponding to the pure
equilibrium (B, B)
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Unbalanced coordination

Eylur]l =x(By —2)+2 -2y
Eylucl =y(Bx —2)+2—2x

Forx <2/3 andx > 2/3 we will reach to the same conclusion
It remains to see what is goingonforx =2/3 andy = 2/3

Fory = 2/3 the slope 3y — 2 of E, [ur] is zero and E, [ur] is
maximized by any choice of x, including x = 2/3
Forx = 2/3 the slope 3x — 2 of E,[uc] is zero and E,, [uc] is
maximized by any choice of y, includingy = 2/3

(x,y) = (2/3,2/3) is a fully mixed equilibrium of the game
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Summary

Dominant strateqgy: a strategy that is always the best response

Pure equilibrium: every player selects a best response, and has no
incentive to deviate

Pure equilibria are not guaranteed to exist
Mixed strategy: a probability distribution over the set of strategies

Mixed equilibrium: every player selects a mixed strategy that is a best
response to the mixed strategies of the other players

There is always at least one mixed equilibrium (finite games)

Every pure equilibrium is a mixed equilibrium

Computing mixed equilibria in 2x2 games: define a parameterized
probability distribution per player, compute the probability
distribution over the states of the game, compute the expected utility

of each player and write it as a linear function of its parameter, argue
about the slope (negative, positive, zero)
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