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CSEcon

Design and analysis of algorithms for optimization problems, which deal 
with strategic agents, and require the use of notions and tools that have 

been developed in micro-economic theory (specifically, game theory)



Problems considered in this thesis

• The efficiency of resource allocation mechanisms for budget-
constrained users

• Inefficiency in opinion formation games

• Mechanism design for ownership transfer

• Revenue maximization in take-it-or-leave-it sales



Resource allocation with budget 
constraints
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• One divisible resource

– Bandwidth of a communication link

– Processing time of a CPU

– Storage space of a cloud



Resource allocation

• One divisible resource

– Bandwidth of a communication link

– Processing time of a CPU

– Storage space of a cloud

• 𝑛 users such that user 𝑖 has a valuation function 𝑣𝑖: 0,1 → ℝ≥0

– 𝑣𝑖 𝑥 represents the value of user 𝑖 for a fraction 𝑥 of the resource

– concave 

– non-decreasing

– (semi-)differentiable



Resource allocation

Find an allocation 𝒙 = 𝑥1, … , 𝑥𝑛 : σ𝑖 𝑥𝑖 = 1

to maximize social welfare  SW 𝒙 = σ𝑖 𝑣𝑖(𝑥𝑖)



Resource allocation

Find an allocation 𝒙 = 𝑥1, … , 𝑥𝑛 : σ𝑖 𝑥𝑖 = 1

to maximize social welfare  SW 𝒙 = σ𝑖 𝑣𝑖(𝑥𝑖)

𝑣1 𝑣2

0 𝑥 1 0 1-𝑥 1

optimal allocation: 
equal slopes
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Mechanism 𝑴
(auction)

𝒔 = (𝑠1, … , 𝑠𝑛)

𝑠1, … , 𝑠𝑛 ≥ 0

Input: signals (bids)



Resource allocation mechanisms

Output: allocation and payments

𝑔 𝒔 = (𝑔1 𝒔 , … , 𝑔𝑛 𝒔 )

𝑝 𝒔 = (𝑝1 𝒔 , … , 𝑝𝑛 𝒔 )

σ𝑖 𝑔𝑖(𝒔) = 1

𝑝1 𝒔 , … , 𝑝𝑛 𝒔 ≥ 0

𝒔 = (𝑠1, … , 𝑠𝑛)

𝑠1, … , 𝑠𝑛 ≥ 0

Mechanism 𝑴
(auction)

Input: signals (bids)



Examples

• Kelly mechanism (1997)

– Proportional allocation

– Pay-your-signal (PYS)

𝑔𝑖 𝐬 = ൗ
𝑠𝑖

σ𝑗 𝑠𝑗

𝑝𝑖 𝐬 = 𝑠𝑖
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Examples

• Kelly mechanism (1997)

– Proportional allocation

– Pay-your-signal (PYS)

𝑔𝑖 𝐬 = ൗ
𝑠𝑖

σ𝑗 𝑠𝑗

𝑝𝑖 𝐬 = 𝑠𝑖

66.6%

33.3%
1
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Examples

• Sanghavi and Hajek (SH) mechanism (2004)

– Allocation depending on highest signal

– Pay-your-signal (PYS)
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Examples

• Sanghavi and Hajek (SH) mechanism (2004)

– Allocation depending on highest signal

– Pay-your-signal (PYS)

25%

75%

𝑔ℓ 𝐬 = ൗ
𝑠ℓ

2𝑠ℎ

𝑝𝑖 𝐬 = 𝑠𝑖
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Examples

25%

75%

𝑔ℓ 𝐬 = ൗ
𝑠ℓ

2𝑠ℎ

𝑝𝑖 𝐬 = 𝑠𝑖

𝑔ℎ 𝐬 = 1 − 𝑔ℓ 𝐬

• Sanghavi and Hajek (SH) mechanism (2004)

– Allocation depending on highest signal

– Pay-your-signal (PYS)

1

2

𝑔𝑖 𝐬 =
𝑠𝑖

max
𝑗

𝑠𝑗
න

0

1

ෑ

𝑘≠𝑖

1 −
𝑠𝑘

max
𝑗

𝑠𝑗
𝑡 d𝑡



Strategic behavior

• Users are utility-maximizers

𝑢𝑖 𝑠𝑖 , 𝐬−𝑖 = 𝑣𝑖 𝑔𝑖 𝑠𝑖 , 𝒔−𝑖 − 𝑝𝑖 𝑠𝑖 , 𝒔−𝑖

value payment

𝑣𝑖

0 𝑔𝑖(𝑠𝑖 , 𝒔−𝑖) 1

𝑢𝑖

0 𝑠𝑖



Efficiency of mechanisms

• (Pure Nash) equilibrium: Given the signals of the other users, all 
users submit signals that maximize their personal utilities

• Efficiency of mechanism 𝑴: price of anarchy with respect to the 
social welfare

– Koutsoupias & Papadimitriou (1999)

PoA 𝑴 = sup
𝒗

max
𝒙

SW(𝒙)

min
𝒔∈EQ 𝒗, 𝑴

SW(𝒈(𝒔))



Efficiency of mechanisms

• (Pure Nash) equilibrium: Given the signals of the other users, all 
users submit signals that maximize their personal utilities

• Efficiency of mechanism 𝑴: price of anarchy with respect to the 
social welfare

– Koutsoupias & Papadimitriou (1999)

• PoA(Kelly) = 4/3 (Johari & Tsitsiklis, 2004)

• PoA(SH) = 8/7 (Sanghavi & Hajek, 2004)

• There exist mechanisms with PoA = 1 (Maheswaran & Basar, 2006)
(Yang & Hajek, 2007)  (Johari & Tsitsiklis, 2009)

PoA 𝑴 = sup
𝒗

max
𝒙

SW(𝒙)

min
𝒔∈EQ 𝒗, 𝑴

SW(𝒈(𝒔))



Worst-case characterization

𝑣𝑖

0 𝑔𝑖(𝑠𝑖 , 𝒔−𝑖) 1 0 𝑠𝑖

𝑢𝑖



• The utility function that is defined by the tangent function is 
maximized at the same point

𝑣𝑖

0 𝑔𝑖(𝑠𝑖 , 𝒔−𝑖) 1 0 𝑠𝑖

Worst-case characterization

𝑢𝑖



• The utility function that is defined by the tangent function is 
maximized at the same point

• The same signal vector would still be an equilibrium if the 
valuation functions were replaced by the tangents

𝑣𝑖

0 𝑔𝑖(𝑠𝑖 , 𝒔−𝑖) 1 0 𝑠𝑖

Worst-case characterization

𝑢𝑖



• The utility function that is defined by the tangent function is 
maximized at the same point

• The same signal vector would still be an equilibrium if the 
valuation functions were replaced by the tangents

• The price of anarchy can only become worse

𝑣𝑖

0 𝑔𝑖(𝑠𝑖 , 𝒔−𝑖) 1

𝑢𝑖

0 𝑠𝑖

Worst-case characterization



Budget constraints

• A more realistic model: each user has a private budget 𝑐𝑖 which 
restricts the payments she can afford



Budget constraints

• A more realistic model: each user has a private budget 𝑐𝑖 which 
restricts the payments she can afford

• The strategic behavior of every user is affected

• The game may reach to a different equilibrium

𝑣𝑖

0 𝑔𝑖(𝑠𝑖 , 𝒔−𝑖) 1

𝑢𝑖

0 𝑠𝑖



Efficiency under budget constraints

• The price of anarchy with respect to SW may be arbitrarily bad

– high-value low-budget user vs. low-value high-budget user



Efficiency under budget constraints

• The price of anarchy with respect to SW may be arbitrarily bad

– high-value low-budget user vs. low-value high-budget user

• Liquid welfare

– Syrgkanis and Tardos (2013)

– Dobzinski and Paes Leme (2014)

• Liquid price of anarchy: price of anarchy with respect to the 
liquid welfare

LW 𝒙 = σ𝑖 min{𝑣𝑖 𝑥𝑖 , 𝑐𝑖}

LPoA 𝑴 = sup
(𝒗,𝒄)

max
𝒙

LW(𝒙)

min
𝒔∈EQ (𝒗,𝒄), 𝑴

LW(𝒈(𝒔))



Lower bound for all mechanisms

Theorem
Every resource allocation mechanism with 𝑛 players has liquid 
price of anarchy at least 2 − 1/𝑛



Lower bound for all mechanisms

Theorem
Every resource allocation mechanism with 2 players has liquid 
price of anarchy at least 3/2

𝑣1 𝑥 = 𝑥

0 1

𝑐1 = +∞
𝑣2 𝑥 = 𝑥

0 1

𝑐2 = +∞



Lower bound for all mechanisms

𝑣1 𝑥 = 𝑥

0 1

𝑐1 = +∞
𝑣2 𝑥 = 𝑥

0 1

𝑐2 = +∞

𝑑1 ≤ 1/2 𝑑2 ≥ 1/2

Theorem
Every resource allocation mechanism with 2 players has liquid 
price of anarchy at least 3/2

𝑑1

𝑑2



• The players have the same budget and valuation function               
⇒ liquid price of anarchy for this game = 1

Lower bound for all mechanisms

𝑣1 𝑥 = 𝑥

0 1

𝑐1 = +∞
𝑣2 𝑥 = 𝑥

0 1

𝑐2 = +∞

𝑑1 ≤ 1/2 𝑑2 ≥ 1/2

Theorem
Every resource allocation mechanism with 2 players has liquid 
price of anarchy at least 3/2

𝑑1

𝑑2



Lower bound for all mechanisms

𝑣1 𝑥 = 𝑥

0 1

𝑐1 = +∞
𝑣2 𝑥 = 𝑑2 + 𝑥

0 1

𝑐2 = 𝑑2

Theorem
Every resource allocation mechanism with 2 players has liquid 
price of anarchy at least 3/2



Lower bound for all mechanisms

𝑣1 𝑥 = 𝑥

0 1

𝑐1 = +∞
𝑣2 𝑥 = 𝑑2 + 𝑥

0 1

𝑐2 = 𝑑2

𝑑1 ≤ 1/2 𝑑2 ≥ 1/2

Theorem
Every resource allocation mechanism with 2 players has liquid 
price of anarchy at least 3/2

𝑑1

2𝑑2



• Equilibrium: LW 𝒅 = 𝑑1 + 𝑑2 = 1

Lower bound for all mechanisms

𝑣1 𝑥 = 𝑥

0 1

𝑐1 = +∞
𝑣2 𝑥 = 𝑑2 + 𝑥

0 1

𝑐2 = 𝑑2

𝑑1 ≤ 1/2 𝑑2 ≥ 1/2

Theorem
Every resource allocation mechanism with 2 players has liquid 
price of anarchy at least 3/2

𝑑1

2𝑑2



• Equilibrium: LW 𝒅 = 𝑑1 + 𝑑2 = 1

• Optimal allocation: LW 𝒙 = 1 + 𝑑2 ≥ 3/2 □

Lower bound for all mechanisms

𝑣1 𝑥 = 𝑥

0 𝑥1 = 1

𝑐1 = +∞
𝑣2 𝑥 = 𝑑2 + 𝑥

𝑥2 = 0 1

𝑐2 = 𝑑2

𝑑1 ≤ 1/2 𝑑2 ≥ 1/2

Theorem
Every resource allocation mechanism with 2 players has liquid 
price of anarchy at least 3/2

1



Worst-case characterization

• Mechanism 𝑴 with allocation function 𝑔 and payment function 𝑝



• Mechanism 𝑴 with allocation function 𝑔 and payment function 𝑝

• For every 𝒔, the worst case game where 𝒔 is an equilibrium has a 
very special structure

𝑣1 𝑥 = 𝜆1 𝒔 𝑥

0 1

𝑐1 = +∞
𝑣𝑖 𝑥 = 𝑐𝑖 + 𝜆𝑖 𝒔 𝑥

0 1

𝑐𝑖 = 𝑝𝑖(𝒔)

Worst-case characterization



• Mechanism 𝑴 with allocation function 𝑔 and payment function 𝑝

• For every 𝒔, the worst case game where 𝒔 is an equilibrium has a 
very special structure

𝑣1 𝑥 = 𝜆1 𝒔 𝑥

0 𝑔1(𝒔) 1

𝑐1 = +∞
𝑣𝑖 𝑥 = 𝑐𝑖 + 𝜆𝑖 𝒔 𝑥

0 𝑔𝑖(𝒔) 1

𝑐𝑖 = 𝑝𝑖(𝒔)

equilibrium

𝜆1 𝒔 𝑔1(𝒔)

𝑐𝑖 + 𝜆𝑖 𝒔 𝑔𝑖(𝒔)

LW 𝑔(𝒔) = σ𝑖≥2 𝑝𝑖(𝑠) + 𝜆1 𝒔 𝑔1(𝒔)

Worst-case characterization



• Mechanism 𝑴 with allocation function 𝑔 and payment function 𝑝

• For every 𝒔, the worst case game where 𝒔 is an equilibrium has a 
very special structure

𝑣1 𝑥 = 𝜆1 𝒔 𝑥

0 𝑥1(𝒔) = 1

𝑐1 = +∞
𝑣𝑖 𝑥 = 𝑐𝑖 + 𝜆𝑖 𝒔 𝑥

0 = 𝑥𝑖(𝒔) 1

𝑐𝑖 = 𝑝𝑖(𝒔)

optimal allocation

𝜆1 𝒔

LW 𝑥(𝒔) = σ𝑖≥2 𝑝𝑖(𝑠) + 𝜆1 𝒔

Worst-case characterization



• Mechanism 𝑴 with allocation function 𝑔 and payment function 𝑝

• For every 𝒔, the worst case game where 𝒔 is an equilibrium has a 
very special structure

Worst-case characterization

LPoA 𝒔−game =
LW 𝑥(𝒔)

LW 𝑔(𝒔)
=

σ𝑖≥2 𝑝𝑖 𝒔 + 𝜆1(𝒔)

σ𝑖≥2 𝑝𝑖 𝒔 + 𝜆1 𝒔 𝑔1(𝒔)



• Mechanism 𝑴 with allocation function 𝑔 and payment function 𝑝

• For every 𝒔, the worst case game where 𝒔 is an equilibrium has a 
very special structure

Theorem
The liquid price of anarchy of mechanism 𝑴 is

where:

LPoA 𝑴 = sup
𝒔

σ𝑖≥2 𝑝𝑖 𝒔 + 𝜆1(𝒔)

σ𝑖≥2 𝑝𝑖 𝒔 + 𝜆1 𝒔 𝑔1(𝒔)

Worst-case characterization

𝜆1 𝒔 =
𝜕𝑔1(𝑦, 𝑠−1)

𝑑𝑦
ቚ

𝑦=𝑠1

−1

∙
𝜕𝑝1(𝑦, 𝑠−1)

𝑑𝑦
ቚ

𝑦=𝑠1

LPoA 𝒔−game =
LW 𝑥(𝒔)

LW 𝑔(𝒔)
=

σ𝑖≥2 𝑝𝑖 𝒔 + 𝜆1(𝒔)

σ𝑖≥2 𝑝𝑖 𝒔 + 𝜆1 𝒔 𝑔1(𝒔)



Tight bound for the Kelly mechanism

Theorem
The liquid price of anarchy of the Kelly mechanism is exactly 2



• Every player pays her signal: σ𝑖≥2 𝑝𝑖 𝒔 = σ𝑖≥2 𝑠𝑖 = 𝐶

Tight bound for the Kelly mechanism

Theorem
The liquid price of anarchy of the Kelly mechanism is exactly 2



• Every player pays her signal: σ𝑖≥2 𝑝𝑖 𝒔 = σ𝑖≥2 𝑠𝑖 = 𝐶

• For player 1: 𝑔1 𝒔 =
𝑠1

𝑠1+𝐶

Tight bound for the Kelly mechanism

Theorem
The liquid price of anarchy of the Kelly mechanism is exactly 2



• Every player pays her signal: σ𝑖≥2 𝑝𝑖 𝒔 = σ𝑖≥2 𝑠𝑖 = 𝐶

• For player 1: 𝑔1 𝒔 =
𝑠1

𝑠1+𝐶

𝑔1 𝑦, 𝒔−1 =
𝑦

𝑦+𝐶
⇒

𝜕𝑔1(𝑦,𝒔−1)

𝑑𝑦
ȁ𝑦=𝑠1

=
𝐶

(𝑠1+𝐶)2

𝑝1 𝑦, 𝒔−1 = 𝑦 ⇒
𝜕𝑝1(𝑦,𝒔−1)

𝑑𝑦
ȁ𝑦=𝑠1

= 1

Tight bound for the Kelly mechanism

𝜆1 𝒔 =
(𝑠1 + 𝐶)2

𝐶

Theorem
The liquid price of anarchy of the Kelly mechanism is exactly 2



• Every player pays her signal: σ𝑖≥2 𝑝𝑖 𝒔 = σ𝑖≥2 𝑠𝑖 = 𝐶

• For player 1: 𝑔1 𝒔 =
𝑠1

𝑠1+𝐶

𝑔1 𝑦, 𝒔−1 =
𝑦

𝑦+𝐶
⇒

𝜕𝑔1(𝑦,𝒔−1)

𝑑𝑦
ȁ𝑦=𝑠1

=
𝐶

(𝑠1+𝐶)2

𝑝1 𝑦, 𝒔−1 = 𝑦 ⇒
𝜕𝑝1(𝑦,𝒔−1)

𝑑𝑦
ȁ𝑦=𝑠1

= 1

□

Tight bound for the Kelly mechanism

𝜆1 𝒔 =
(𝑠1 + 𝐶)2

𝐶

LPoA Kelly = sup
𝑠1,𝐶

𝐶 + (𝑠1 + 𝐶)2/𝐶

𝐶 + 𝑠1(𝑠1 + 𝐶)/𝐶
= 2

Theorem
The liquid price of anarchy of the Kelly mechanism is exactly 2
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mechanism LPoA
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Kelly 2

SH 3

E2-PYS 1.79

E2-SR 1.53 

different picture than the           
no-budget setting



Overview of results

mechanism LPoA

all ≥ 2-1/𝒏

Kelly 2

SH 3

E2-PYS 1.79

E2-SR 1.53 

The allocation functions are solutions of simple linear 
differential equations, which are defined by properly 
setting the payment function (PYS/SR) and using the 

worst-case characterization theorem
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mechanism LPoA
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SH 3

E2-PYS 1.79

E2-SR 1.53 

best possible PYS mechanism   
for two players



Overview of results

mechanism LPoA

all ≥ 2-1/𝒏

Kelly 2

SH 3

E2-PYS 1.79

E2-SR 1.53 almost best possible mechanism 
for two players



Opinion formation games



A simple model

• There is a set of individuals, and each of them has a (numerical) 
personal belief 𝑠𝑖

• However, she might express a possibly different opinion 𝑧𝑖

• Averaging process: all individuals simultaneously update their 
opinions according to the rule

• 𝑁𝑖 indicates the social circle of individual 𝑖

– Friedkin & Johnsen (1990)

𝑧𝑖 =
𝑠𝑖 + σ𝑗∈𝑁𝑖

𝑧𝑗

1 + ȁ𝑁𝑖ȁ



Game-theoretic interpretation

• The limit of the averaging process is the unique equilibrium of an 
opinion formation game that is defined by the personal beliefs of 
the individuals

• The opinions of the individuals (players) can be thought of as their 
strategies

• Each player has a cost that depends on her belief and the opinions 
that are expressed by other players in her social circle

• The players act as cost-minimizers 

– Bindel, Kleinberg, & Oren (2015)

cost𝑖 𝒔, 𝒛 = 𝑧𝑖 − 𝑠𝑖
2 + ෍

𝑗∈𝑁𝑖

𝑧𝑖 − 𝑧𝑗
2



Co-evolutionary games

• The social circle of an individual changes as the opinions change

• 𝒌-NN games (Nearest Neighbors) 

• There is no underlying social network

• The social circle 𝑁𝑖 𝒔, 𝒛 consists of the 𝑘 players with opinions 
closest to the belief of player 𝑖

• Same cost function

– Bhawalkar, Gollapudi, & Munagala (2013) 

cost𝑖 𝒔, 𝒛 = 𝑧𝑖 − 𝑠𝑖
2 + ෍

𝑗∈𝑁𝑖 𝐬,𝐳

𝑧𝑖 − 𝑧𝑗
2



Compromising opinion formation games

• 𝒌-COF games

• There is no underlying social network

• The social circle 𝑁𝑖 𝒔, 𝒛 consists of the 𝑘 players with opinions 
closest to the belief of player 𝑖

• Different cost function definition

cost𝑖 𝒔, 𝒛 = max
𝑗∈𝑁𝑖 𝐬,𝐳

𝑧𝑖 − 𝑠𝑖 , ȁ𝑧𝑖 − 𝑧𝑗ȁ



Compromising opinion formation games

• 𝒌-COF games

• There is no underlying social network

• The social circle 𝑁𝑖 𝒔, 𝒛 consists of the 𝑘 players with opinions 
closest to the belief of player 𝑖

• Different cost function definition

– Do pure equilibria always exist?

– Can we efficiently compute them when they do exist?

– How efficient are equilibria (price of anarchy and stability)?

cost𝑖 𝒔, 𝒛 = max
𝑗∈𝑁𝑖 𝐬,𝐳

𝑧𝑖 − 𝑠𝑖 , ȁ𝑧𝑖 − 𝑧𝑗ȁ
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Overview of results

• Pure equilibria may not exist, for any 𝑘 ≥ 1

• For 𝑘 = 1, we can efficiently compute the best and the worst 
equilibrium

– Shortest and longest paths in DAGs

• The price of anarchy and stability depend linearly on 𝑘

– Proofs based on LP duality and case analysis

– Tight bound of 3 on the price of anarchy for 𝑘 = 1 

– Lower bounds on the mixed price of anarchy
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Ownership transfer

• Privatization of government assets 

– Public electricity or water companies, airports, buildings, …

• Sports tournaments organization

– World cup, Olympics, Formula 1, …

• How should we decide who the new owner is going to be?

– Use of historical data related to the possible owners

– Run an auction among the possible buyers

• The new owner wants to maximize her own profit

– Her decisions as the owner might critically affect the welfare of the 
society (company’s employees and consumers, or the citizens)



Ownership transfer

• The goal is to make a decision that will sufficiently satisfy both the 
society and the new owner (if one exists)



Ownership transfer

• The goal is to make a decision that will sufficiently satisfy both the 
society and the new owner (if one exists)

• Auction + expert advice

– The auction guarantees that the selling price is the best possible

– The expert guarantees the well-being of the society



A simple model

• One item for sale

• Two possible buyers 𝑨 and 𝑩

– Each buyer 𝑖 has a monetary valuation 𝑤𝑖 for the item

• One expert

– The expert has von Neumann-Morgenstern valuations 𝑣(∙) for the 
three options:

(1)  sell the item to buyer 𝛢

(2)  sell the item to buyer 𝛣

(3)  Do not sell the item (⊘)

– vNM valuations: [1, 𝑥, 0]



A simple model

• Design mechanisms that

– incentivize the buyers and the expert to truthfully report their 
preferences, and

– decide the option 𝑖 ∊ {𝐴, 𝐵,⊘} that maximizes the social welfare

SW 𝑖 = ൞
𝑣 𝑖 +

𝑤𝑖

max(𝑤𝐴, 𝑤𝐵)
, 𝑖 ∊ {𝐴, 𝐵}

𝑣 ⊘ , otherwise



A simple model

• Design mechanisms that

– incentivize the buyers and the expert to truthfully report their 
preferences, and

– decide the option 𝑖 ∊ {𝐴, 𝐵,⊘} that maximizes the social welfare

SW 𝑖 = ൞
𝑣 𝑖 +

𝑤𝑖

max(𝑤𝐴, 𝑤𝐵)
, 𝑖 ∊ {𝐴, 𝐵}

𝑣 ⊘ , otherwise

• Combination of approximate mechanism design

– with money for the buyers (Nisan & Ronen, 2001)

– without money for the expert (Procaccia & Tennenholtz, 2013)



Problem difficulty

• Mechanism: given input by the buyers and the expert, choose 
the option that maximizes the social welfare

– Can this mechanism incentivize the participants to truthfully report their 
valuations?
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Problem difficulty

• Mechanism: given input by the buyers and the expert, choose 
the option that maximizes the social welfare

– Can this mechanism incentivize the participants to truthfully report their 
valuations?

0
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Examples of truthful mechanisms

• Mechanism: choose the favorite option of the expert

• SW(mechanism) = SW(no-sale) = 1 vs. SW(green) ≈ 2 

– approximation ratio = 2

1

0.70

1

.99



Examples of truthful mechanisms

• Mechanism: with probability 2/3 choose the expert’s favorite option, 
and with probability 1/3 choose the expert’s second favorite option

• SW(mechanism) = SW(no-sale) · 2/3 + SW(green) · 1/3 ≈ 4/3

– 3/2-approximate

1

0.70

1

.99
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Overview of results

class of mechanisms approx

ordinal 1.5

bid-independent 1.377

expert-independent 1.343

randomized template 1.25

deterministic template 1.618 

deterministic ≥ 1.618

all ≥ 1.14
Unconditional lower bounds for 

all mechanisms



Revenue maximization in      
combinatorial sales



• 𝑨 = binary matrix with 𝑛 rows and 𝑚 columns

The asymmetric binary matrix partition
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• 𝑨 = binary matrix with 𝑛 rows and 𝑚 columns

• 𝒑 = probability distribution over the columns of 𝑨
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• 𝑨 = binary matrix with 𝑛 rows and 𝑚 columns

• 𝒑 = probability distribution over the columns of 𝑨

• 𝑩 = partition scheme

– Consists of a partition 𝐵𝑖 of the columns for every row 𝑖

10% 20% 25% 45%

0 0 0 1

1 0 0 0

0 0 1 0

1 0 1 1

𝑨 =

𝒑 =

The asymmetric binary matrix partition



• 𝑨𝑩 = smooth matrix that is the result of the application of the 
partition scheme 𝑩 on matrix 𝑨

𝑗 ∈ 𝐵𝑖𝑘 ⟹ 𝐴𝑖𝑗
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𝑝ℓ ⋅ 𝐴𝑖ℓ

σℓ∈𝐵𝑖𝑘
𝑝ℓ
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• 𝑨𝑩 = smooth matrix that is the result of the application of the 
partition scheme 𝑩 on matrix 𝑨
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• 𝑨𝑩 = smooth matrix that is the result of the application of the 
partition scheme 𝑩 on matrix 𝑨

𝐴41
𝐵 =

10% ⋅ 1 + 20% ⋅ 0

10% + 20%
= 0.33

𝐴23
𝐵 =

10% ⋅ 1 + 20% ⋅ 0 + 25% ⋅ 0

10% + 20% + 25%
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• 𝑨𝑩 = smooth matrix that is the result of the application of the 
partition scheme 𝑩 on matrix 𝑨

𝑗 ∈ 𝐵𝑖𝑘 ⟹ 𝐴𝑖𝑗
𝐵 =

σℓ∈𝐵𝑖𝑘
𝑝ℓ ⋅ 𝐴𝑖ℓ
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• Partition value of scheme 𝑩:
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• Partition value of scheme 𝑩:

10% 20% 25% 45%

0 0 0 1

1 0 0 0

0 0 1 0

1 0 1 1

𝑣𝑩 𝑨, 𝒑 = ෍

𝑗∈[𝑚]

𝑝𝑗 ⋅ max
𝑖

𝐴𝑖𝑗
𝐵

10% 20% 25% 45%

0 0.5 0.5 0.5

0.18 0.18 0.18 0

0.25 0.25 0.25 0.25

0.33 0.33 1 1

𝑨 =

𝒑 =

= 𝑨𝑩

𝑣𝑩 𝑨, 𝒑 = 10% ⋅ 0.33 + 20% ⋅ 0.5 + 25% ⋅ 1 + 45% ⋅ 1 = 0.83

The asymmetric binary matrix partition



• Objective: Given 𝑨 and 𝒑, compute a partition scheme 𝑩 with 
maximum value 𝑣𝑩(𝑨, 𝒑)

The asymmetric binary matrix partition



• Objective: Given 𝑨 and 𝒑, compute a partition scheme 𝑩 with 
maximum value 𝑣𝑩(𝑨, 𝒑)

• Application: Revenue maximization in take-it-or-leave-it sales

– There are 𝑚 items and 𝑛 possible buyers with valuations over the 
items

– The seller has full information, while the buyers do not

– How can the seller group the items and sell them to the buyers, in 
order to maximize her expected profit?

• Asymmetric information (Akerlof, 1970) (Crawford & Sobel, 
1982) (Milgrom & Weber, 1982) (Ghosh et al., 2007) (Emek et al., 
2012) (Miltersen & Sheffet, 2012)

The asymmetric binary matrix partition



• Problem introduced by Alon, Feldman, Gamzu and Tennenholtz
(2013)

• APX-hard

• 0.563-approximation algorithm for the case of uniform probability 
distributions

• 0.077-approximation algorithms for general distributions

• Other approximations for non-binary values

Previous results



An improved approximation algorithm 
for uniform distributions

Greedy algorithm

• Cover phase: Compute a full cover of the one-columns 
(columns that contain at least one 1-value)

• Greedy phase: For each zero-column (containing only 0-values), 
add the column to the bundle that maximizes the column’s 
marginal contribution to the partition value
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GREEDY = 3/4

OPT = 5/6

𝝆 ≥
GREEDY

OPT
=

9

10

Greedy algorithm

• Cover phase: Compute a full cover of the one-columns 
(columns that contain at least one 1-value)

• Greedy phase: For each zero-column (containing only 0-values), 
add the column to the bundle that maximizes the column’s 
marginal contribution to the partition value



Overview of results

• 0.9-approximation algorithm for uniform probability distributions

– Greedy algorithm

– Analysis using linear programming (factor-revealing LPs)

• 0.58-approximation algorithm for general probability 
distributions

– Reduction to submodular welfare maximization



• The efficiency of resource allocation mechanisms for budget-
constrained users

– I. Caragiannis and A. A. Voudouris

– Proceedings of the 19th ACM Conference on Economics and Computation (EC), 
pages 681-698, 2018

• Bounding the inefficiency of compromise

– I. Caragiannis, P. Kanellopoulos, and A. A. Voudouris

– Proceedings of the 26th International Joint Conference on Artificial Intelligence 
(IJCAI), pages 142-148, 2017

Papers in this thesis



• Truthful mechanisms for ownership transfer

– I. Caragiannis, A. Filos-Ratsikas, S. Nath, and A. A. Voudouris

– Preliminary version to be presented at the first Workshop on Opinion 
Aggregation, Dynamics, and Elicitation (WADE@EC18), 2018

• Near-optimal asymmetric binary matrix partitions
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– Algorithmica, vol. 80(1), pages 48-72, 2018

– Extended abstract in Proceedings of the 40th International Symposium on 
Mathematical Foundations of Computer Science (MFCS), pages 1-13, 2015
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• Mobility-aware, adaptive algorithms for wireless power transfer in ad hoc 
networks

– A. Madhja, S. Nikoletseas, and A. A. Voudouris

– Prοceedings of the 14th International Symposium on Algorithms and Experiments for 
Wireless Networks (ALGOSENSORS), 2018

• Peer-to-peer energy-aware tree network formation
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– Prοceedings of the 16th ACM International Symposium on Mobility Managements and 
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• Efficiency and complexity of price competition among single product vendors
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Other papers



• Optimizing positional scoring rules for rank aggregation

– I. Caragiannis, X. Chatzigeorgiou, G. A. Krimpas, and A. A. Voudouris
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