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Design and analysis of algorithms
for non-cooperative environments

Alexandros A. Voudouris
Abstract

This thesis studies issues related to problems that arise in large-scale distributed environments
with non-cooperative users, who act strategically and compete with each other to maximize

their personal payoffs.

For instance, imagine a scenario where a set of users compete over a resource, such as
the bandwidth of a communication link or advertisement slots when keywords are queried
in search engines on the Internet. A mechanism takes input from all participating users (which
represents their preferences) and outputs an allocation of the resource to them (it distributes
the bandwidth or assigns slots). Each user aims to select her input to the mechanism in order to
satisfy her personal objectives (possibly by misreporting her true preferences), without caring
about the social welfare which we would like to maximize as the designers of the mechanism.
Therefore, this behavior induces a strategic game among the users who act as players and
sequentially change their strategies until they reach an equilibrium state (if one exists) from
which no one has any incentive to deviate. Due to the strategic behavior of the users, the
equilibrium that is reached may be of low quality in terms of some objective function like the
social welfare, compared to what could happen if a central authority dictated the strategies of
the users. The price of anarchy and stability are two quantification measures of this kind of
inefficiency at equilibrium.

Our main goal in this thesis is to understand the advantages and constraints of the strategic
games that arise in non-cooperative environments as means of computation. What can they
compute and how well can they compute it? Is it possible to alter the rules of the game and
incentivize the players to truthfully report their preferences? We answer to such questions
related to equilibrium computation, price of anarchy and stability estimation, and truthful
mechanism design for many interesting and important classes of problems. In particular, we
study resource allocation with budget constraints, opinion formation, ownership transfer with

expert advice, and revenue maximization in randomized combinatorial sales.
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Yxedraopog xat avaloon alyopifpwv
yua pn) oovepyatikda neptpallovta

ANe€avopog Avdpiag Boodoopng

ITepiAnyn

H napobvoa Awatpipr) peleta mpoPArjpata mov IpoKvIItovy o meptPAAAovTa peyalng KApa-
KAG € EYWKEVTPIKODG YPIIOTEG, Ol OMOI0l COHIEPLPEPOVTAL OTPATYIKA KAt aviayevifovrat

petadv Tovg pe OKOIO VA [EYIOTOIIOU)00VY TO ATOHIKO TOLG KEPOOG,.

Ia napadetypa, pavtaoteite eva cOVOAO Ao XP1)oteg Mov aviay®vifovial yid évav mopo,
OII®G TO eDPOG (VTG EVOG TNAEMKOIVOVIAKOD KAVAALOD 1) O¢0etg Sragrpiong oe aroteAeéopata
avadrjtmong oto Awadiktvo. Evag pnyaviopog dexetat eioodo arrd 0Aovg Tovg xprjoTeg Kat nd-
payet &g €000 pa katavopn Tov mopov oe avtovg. Kdabe ypriotng mpoonabet va emheSet v
€10000 TOL €101 WOTE VA ECLINPETHOEL TA IIPOCMIILKA TOD CUPPEPOVTA (eVOEXOPEVMG ATIOKPV-
IITOVTag Tig aAnOivég Tov IPOTIPNOELS), X®PIG VA VOLACETAl Y TO KOWVMVIKO OPENOG TO OO0
epeig embopovpe va peyloTONOU)00VE BG OxXed1aoTég Tovg pnxaviopov. H oopmnepupopd avtr)
opiCet éva otpatnyKo matyvidt petadd T®V xpnotav ot oroiot aANAfoLY OTPATYIKEG PEXPL
TO TIalyvidl va @rdaocel og KAtaoTaon 100pPOMIiag amnod TNy oroia Kavelg 0gv £xel Kivrtpo va
arnoxAivet. H wooppomia evoéyetat va éxet pikpr| anodoor) (OOPP®VA fe KATIOA aVTIKEIEVIKI)
OLVAPTNOL) O®G TO KOWMVIKO OPENOG) O oxeor pe To Tt Oa propovoe va oopPetl av kdamola
KeVTPIKI) apx1) Otetale Tovg xprioteg yid To 1ag va ovpnepipepbovv. To xkOoTOg TG avapyiag
Kat g evotdabetag etvat SO0 PETPIKEG IOV XPNOIPOIIOIODVIAL Yid TV ITOOOTIKOIIONO] avTr|g

TG PN)-arI0d0TIKOTI TAG,

Kovptog otoy0g pag eivat ) katavonorn tov SovatoTitov Kadmg KAt T®V IEPLOPIOR®OV TOV
OTPATYIKOV A VIO®V &g péod vroloylopov. Tt prmopovv va vnoloyioovy Kat mood Kahd
priopoovv va to vmohoyicovv; Etvat duovatov va petafallovjie Tovg Kavoveg ToL Hatyvidlon
£TOL WOTE Ol IIAiKTEG VA £XOLV KiviTpo va Aéve mavta v aAndela; Anavidape oe TETO0L &ei-
dovg epatroelg peAetmvtag {ntpata DIIOAOYIOHOD 100PPOIILMV, EKTIHNO1G KOOTOLS avapyiag
Kat evotadetag, kabwg xat oxediaong PUNaAnfmv pnyaviopoV yia evola@Eponoeg Kat ONpavTl-
Keg KAdoetg mpoPAnpatmv. ITo ovykekpipeva, aoyolovpaote pe npoPAnpata avadeong nopmv
LIIO MIEPLOPLOPOVG IIPOBIIOAO YOOV, SIAHOPPWOTG AIMOYEDY O KOWMVIKA diKTod, peTapopdg

1010KTNOLlag, KAt HeyloToIoinong e000®V 0e CLVOLAOTIKEG AYOPES.
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Chapter 1

Introduction

Over the last two decades, the rapid and continuously increasing development of large-scale
distributed systems and social networks, has led to the implementation of non-cooperative
environments, where multiple self-interested agents may compete with each other in many
different contexts. For instance, such agents could be the users of a communication link that
compete over the limited available bandwidth, advertisers that compete over advertising space
when keywords are queried in search engines, potential buyers that compete over acquiring
government assets, or even simple people that debate with their social acquaintances over an
issue by expressing opinions.

In such scenarios, each agent aims to select the best possible strategy in order to optimize
various personal objectives (for example, she might want to maximize some utility function
or minimize some cost function, depending on context), which are not only affected by the
underlying structure of the environment, but also by the other agents and the strategies that
they choose. Consequently, the agents engage as players into a non-cooperative strategic game
[Nash, 1951, Nisan et al., 2007], which is defined by the ground rules of the environment (the
underlying mechanism that is used), as well as by the different possible strategies and the
personal objectives of the participating players. ! When all players have chosen strategies such
that they simultaneously maximize their utility (in the sense that none of them has any incentive
to deviate to a different strategy in order to even slightly increase her personal utility), then we
say that the corresponding strategic game has reached a stable state, an equilibrium. There are
many important computational and mathematical questions regarding stability, computational

complexity and efficiency in strategic games.

'It is worth remarking that non-cooperative games significantly differ from cooperative games [Chalkiadakis
etal., 2011], where the players are allowed to cooperate with each other and form coalitions in order to collectively
achieve to optimize their personal objectives.



Existence of equilibria and complexity

The first apparent question is the following one: Do equilibria always exist? In his famous 1951
paper, John F. Nash proved that any finite strategic non-cooperative game has at least one
equilibrium if the players are allowed to choose probability distributions over their strategies;
these distributions are called mixed strategies. However, this is not always the case when the
players choose their strategies deterministically; these are called pure strategies. If equilibria do
exist, then what is the complexity of computing them? There has been much research devoted
to this question, especially for the case of mixed equilibria for which the existential aspect has
already been answered positively. In general, Daskalakis et al. [2009] and Chen et al. [2009]
proved that the problem of computing a mixed equilibrium in reasonable time is hard (PPAD-

complete) even for two players only.
Efficiency at equilibrium

Of course, one of the most important issues in computing systems are related to efficiency.
To measure efficiency in a strategic game, we can define a social objective function over all
possible states of the game; the value of this social function for a particular state of the game
can be thought of as representing the total happiness (or unhappiness, depending on context)
of the players for this state. As system designers, we would like the game to end up in a state
that globally maximizes the social function in order to maximize the total happiness of the
participating players. However, this goal is not always totally aligned to the selfishness of the

players, which may only lead to local maxima of the social function instead.

To quantify the worst-case degradation of quality in equilibria, in their celebrated 1999
paper, Koutsoupias and Papadimitriou introduced the notion of the price of anarchy, which
is defined as the ratio between the maximum value of the social function (attained at any
state of the game) and the minimum value of the social function attained at any equilibrium;
essentially, the price of anarchy is an analogue to the approximation ratio in combinatorial
optimization [Vazirani, 2001, Williamson and Shmoys, 2011]. The similar notion of the price of
stability was later introduced by Anshelevich et al. [2008] in order to quantify the best-case
efficiency loss at equilibria (using the maximum function value equilibrium instead of the

minimum one in the definition of the ratio).

Apart from the aforementioned papers that introduced the price of anarchy and the price

of stability, these notions have been used extensively in order to bound the inefficiency of



equilibria in many important classes of strategic games that naturally arise in distributed
systems. Indicatively, they have been applied in the context of congestion games (for instance,
see the papers by Roughgarden and Tardos [2002] and Christodoulou and Koutsoupias [2005],
which are among the very first ones on this topic) and auctions (for example, see the seminal
work of Christodoulou et al. [2016a], which initiated the analysis of price of anarchy in Bayesian
auction settings, as well as the recent survey by Roughgarden et al. [2017], which goes through

almost all recent developments on issues related to efficiency in auctions).
Mechanism design

Another rich line of research that focuses on mechanism design deals with the question of
whether we can guide the strategic behavior of the players by altering the rules of the game so
that they have the motive to act truthfully and the game is able to reach more efficient equilibria.
A prime example of such a mechanism is the single-item second price auction of Vickrey [1961]
which allocates the item to the highest bidder and requires a payment from her that is equal
to the second highest bid. This auction format achieves to allocate the item to the player that
values it the most and is truthful in the sense that all participants have incentive to simply bid

the value they have for the item.

For multiple items, the ideas of the second price auction are adapted by the well-known
Vickrey-Clarke-Groves (VCG) mechanism, which allocates the items in order to maximize the
total value of the players, while it requires from each of them a payment that is equal to the
value of the allocation that would be computed if they did not participate in the auction. Even
though the VCG mechanism looks like the ideal solution, it cannot always be applied. In many
scenarios, it may require to search over an exponentially large space in order to identify the
optimal allocation, while the players need to report their whole valuation functions, which

may lead to exponential communication complexity.

Given these limitations of the VCG mechanism in many interesting scenarios as well as the
fact that it requires the use of monetary transfers in order to operate, 2 a plethora of researchers
have instead focused on the design of simple truthful mechanisms that are approximately
optimal and may use money [Nisan and Ronen, 2001] or not [Procaccia and Tennenholtz, 2013].
Subsequently, approximate mechanism design has been applied in many different settings like

in combinatorial auctions [Dobzinski et al., 2012, Mualem and Nisan, 2008], keyword search

2 Actually, the use of money is essential in order to avoid well-known impossibilities from social choice theory,
which state that optimal and truthful mechanisms are necessarily dictatorial [Gibbard, 1973, Satterthwaite, 1975].



auctions [Aggarwal et al., 2006], fair division [Cole et al., 2013], social welfare maximization
problems [Briest et al., 2011, Filos-Ratsikas et al., 2014, Filos-Ratsikas and Miltersen, 2014],
scheduling problems [Archer and Tardos, 2001], and even kidney exchange [Ashlagi et al.,
2015, Caragiannis et al., 2015].

Problems considered in this thesis

In this thesis, we consider issues related to stability, computational complexity, efficiency, and
mechanism design for four different problems that emerge due to the strategic behavior of
the participating agents. In particular, we first focus on the efficiency of mechanisms for the
allocation of a single divisible resource among users that have budget constraints. Second, we
turn our attention to a particular class of compromising opinion formation games. Third, we
consider a novel mechanism design problem related to ownership transfer. Finally, we also
design approximation algorithms for revenue maximization in combinatorial sales. In the rest
of this chapter, we will give a comprehensive introduction and motivation for each of these

problems, and shortly discuss our contribution and techniques.
1.1 Resource allocation with budget constraints

Resource allocation is an ubiquitous task in computing systems and usually sets non-trivial
algorithmic challenges to their design. As such, resource allocation problems have received
much attention by the algorithmic community for decades. The recent emergence of large-scale
distributed systems with non-cooperative users that compete for access to scarce resources has

led to game-theoretic treatments of resource allocation.

In this thesis, we study a particular simple class of resource allocation mechanisms that aim to
distribute a divisible resource (such as bandwidth of a communication link, CPU time, storage
space, etc.) by auctioning it off to different users as follows. Each user is asked to submit a scalar
signal. Given the submitted signals, the mechanism decides the fraction of the resource that
will be allocated to each user, as well as the payment that will be received from each of them. A
typical example is a mechanism that has been proposed by Kelly [1997] (henceforth called the
Kelly mechanism; see also Kelly et al. [1998]), according to which the fraction of the resource

allocated to each user is proportional to the user’s signal, and the signal itself is her payment.

Following the standard modeling assumptions in the related literature, the value of each
user for a resource fraction is given by a private valuation function. The above definition of

resource allocation mechanisms allows the users to act strategically in the sense that the

4



signal they select to submit is such that their utility (value for the fraction of the resource
they receive minus payment) is maximized. Naturally, this behavior defines a strategic game
among the users, who act as players. Soon after the definition of the Kelly mechanism, a series
of papers studied the existence and uniqueness of pure Nash equilibria (snapshots of player
strategies, in which the signal of each player maximizes her own utility) of the induced games
[Hajek and Gopalakrishnan, 2002, La and Anantharam, 2000, Maheswaran and Basar, 2003]
and quantified their inefficiency [Johari and Tsitsiklis, 2004] using the notion of the price of

anarchy [Koutsoupias and Papadimitriou, 1999].

In particular, Johari and Tsitsiklis [2004] used the social welfare — the total value of the
players for their received fraction of the resource — as an efficiency benchmark and proved
that the social welfare at any equilibrium is at least 3/4 times the optimal social welfare. This
translates into a price of anarchy bound of 4/3, which is tight. The paper of Johari and Tsitsiklis
[2004] sparked subsequent research on other resource allocation mechanisms, that use different

allocation rules or payments.

A first apparent question was whether improved price of anarchy bounds are possible by
changing the proportional allocation function, but keeping the simple pay-your-signal (PYS,
for short) payment rule. Sanghavi and Hajek [2004] showed that no PYS mechanism has price
of anarchy better than 8/7, designed an allocation function that achieves this bound for two
players, and provided strong experimental evidence that a slightly inferior bound holds for
arbitrarily many players. Surprisingly, full efficiency at equilibria (i.e., a price of anarchy equal
to 1) is possible via different allocation/payment functions. This discovery was made in three
independent papers by Maheswaran and Basar [2006], Yang and Hajek [2007], and Johari and
Tsitsiklis [2009]. The mechanism of Maheswaran and Basar [2006] uses proportional allocation
but different payments (see Section 2.3 for its description), while the mechanisms of Johari and
Tsitsiklis [2009] and Yang and Hajek [2007] are adaptations of the well-known VCG paradigm
(see also the survey by Johari [2007] on these results).

Our focus is on the — arguably, more realistic — setting, in which each player has a private
budget that restricts the payments that she can afford and, consequently, narrows her strategy
space. As resource allocation mechanisms do not have direct access to budgets, the set of
equilibria can drastically change and their social welfare can be extremely low compared to the
optimal social welfare, which in turn is not related to player strategies, payments, or budgets.

An efficiency benchmark that is suitable for budget-constrained players is known as liquid



welfare (introduced by Dobzinski and Paes Leme [2014] and, independently, by Syrgkanis and
Tardos [2013] who call it effective welfare) and is obtained by slightly changing the definition of
the social welfare, taking budgets into account. Informally, the liquid welfare is the total value
of the players for the resource fraction they receive, with the value of each player capped by her
budget. Following the recent paper of Azar et al. [2017], we use the term liquid price of anarchy
(and abbreviate it as LPoA) to refer to the price of anarchy with respect to the liquid welfare,
i.e., the ratio between the optimal liquid welfare of a game induced by a resource allocation

mechanism and the worst liquid welfare over all equilibria of the game.
Our contribution

In chapter 2, we show a tight bound of 2 on the liquid price of anarchy of the Kelly mechanism
and an unconditional lower bound of 2 — 1/n for any n-player mechanism, essentially proving
that Kelly is best possible among all multi-user resource allocation mechanisms. In our proofs,
we exploit the particular structure of worst-case games and equilibria, which also allows us
to design (nearly) optimal two-player mechanisms by solving simple differential equations.

These results have been published in [Caragiannis and Voudouris, 2018].
1.2 Opinion formation and compromise

Opinion formation has been the subject of much research in sociology, economics, physics, and
epidemiology for decades. The widespread adoption of the Internet has allowed the recent
blossoming of social networks, which have facilitated information dissemination in ways that
have been beneficial for their users, but they are often used strategically in order to spread
information that only serves the objectives of particular parties. These properties have recently
attracted the interest of researchers in artificial intelligence [Auletta et al., 2016, Schwind et al.,
2015, Tsang and Larson, 2014] as well as in computer science at large [Bindel et al., 2015, Mossel
and Tamuz, 2014, Olshevsky and Tsitsiklis, 2009], and has led to revisions of classical opinion

formation models from sociology using game-theoretic notions and tools.

An influential model that captures the adoption of opinions in a social context has been
proposed by Friedkin and Johnsen [1990]. According to this, each individual has an internal
belief on an issue and publicly expresses a (possibly different) opinion; internal beliefs and
public opinions are modeled as real numbers. In particular, the opinion that an individual
expresses follows by averaging between her internal belief and the opinions expressed by her

social acquaintances. Recently, Bindel et al. [2015] showed that this behavior can be interpreted



through a game-theoretic lens: averaging between the internal belief of an individual and
the opinions in her social circle is simply a strateqy that minimizes an implicit cost for the
individual. This cost is defined using a quadratic function which is equal to the total squared
distance of the opinion that the individual expresses from her belief and the opinions expressed
in her social circle. In a sense, the strategic behavior of the individual leads to opinions that

follow the majority of her social acquaintances.

Bindel et al. [2015] considered a static snapshot of the social network and assumed that the
opinion of each individual is affected by all of her social acquaintances. However, in reality, as
opinions evolve, people usually tend to disregard opinions that are far away from their own
personal beliefs, even if these are expressed by their best friends. Following such a reasoning,
Bhawalkar et al. [2013] implicitly assumed that the opinion of an individual depends only on a
small number of people in her social circle, her neighbors. So, in their model, opinion formation
co-evolves with the neighborhood for each individual, which consists of those people who have
opinions that are similar to her belief. Then, the opinion expressed is assumed to minimize the
same quadratic cost function that was previously used by Bindel et al. [2015], taking now into

account the neighborhood instead of the whole social circle.

Both Bindel et al. [2015] and Bhawalkar et al. [2013] were able to prove small constant (9/8
and approximately 14, respectively) bounds on the price of anarchy of the strategic games that
may be induced by the assumptions of their models. These bounds essentially indicate that an
abnormally high fraction of the population of people expresses opinions that are close to their
personal beliefs. Unfortunately, this is hard to rationalize given the so many different and, in
some cases, extreme opinions that are expressed, for example, in discussions regarding politics

or religion.

We follow the co-evolutionary model introduced by Bhawalkar et al. [2013], and assume
that the neighborhood of each individual consists of the k other individuals whose opinions
are the closest ones to her belief. However, we deviate from the quadratic cost definition and,
instead, consider individuals that seek to compromise more with their neighbors, by assuming
that each individual aims to minimize the maximum distance of the opinion she expresses from
her internal belief and each of the opinions expressed in her neighborhood. Naturally, these
modeling decisions lead to the definition of strategic games, which we call k-compromising
opinion formation (k-COF) games, where each individual is a cost-minimizing player with the

opinion expressed as her strategy.



Our contribution

In chapter 3 of this thesis, we quantify the inefficiency of equilibria arising in k-COF games
and show that compromise comes at a cost that strongly depends on the neighborhood size.
Specifically, we prove (both upper and lower) bounds on the price of anarchy and stability
[Anshelevich et al., 2008], which depend linearly on the neighborhood size. For the special case
of k = 1 we also design a simple algorithm that is based on path computations on particularly
defined directed acyclic graphs, which can verify whether there exists a pure equilibrium or
not, and in case it does, it can compute both the best and the worst equilibrium (in terms of

social cost). These results have been published in [Caragiannis et al., 2017a].
1.3 Ownership transfer

Most well-studied problems in computational social choice [Brandt et al., 2016] deal with the
task of merging individual preferences over alternatives - often expressed as rankings - into
a collective choice [Caragiannis et al., 2017,b, Procaccia et al., 2012, Skowron et al., 2016]. More
often than not, the mechanisms employed for this aggregation task are ordinal and do not
utilize the intensities of the preferences of the individuals. Further, due to several well-known
impossibility theorems [Gibbard, 1973, 1977, Satterthwaite, 1975], these mechanisms are also
non-truthful, meaning that some of the participating individuals may have strong incentives
to misreport their preferences to manipulate the mechanism to output an alternative that they

prefer more.

In contrast, the class of truthful cardinal mechanisms has been shown to be much richer
[Barbera et al., 1998, Feige and Tennenholtz, 2010, Freixas, 1984] and exploiting the additional
information provided by the numerical values (expressing individual preferences) can notably
increase the overall well-being of the society [Cheng, 2016, Filos-Ratsikas and Miltersen, 2014,
Guo and Conitzer, 2010]. At the same time, truthful mechanisms with money are pretty well-
understood by now and the welfare-maximizing mechanisms for a wide class of problems
are known [Nisan et al., 2007]. A celebrated such example is the family of VCG mechanisms

[Clarke, 1971, Groves, 1973, Vickrey, 1961].

However, in a rich set of hybrid social choice problems, monetary transfers are possible only
for a fraction of the participating individuals. This naturally renders solutions like the VCG
mechanism insufficient. Therefore, designing truthful, cardinal mechanisms is a much more

challenging task and one needs to combine elements of mechanism design with money and social



choice.

We provide a few examples of such hybrid social choice scenarios. Government agencies
routinely sell public assets such as spectrum, land, or government securities, by transferring
their ownership (or usage rights). As such transfers may have huge impact to citizens, the
decision about the new ownership is not simply the outcome of some competitive process
among the potential buyers (for instance, through an auction), but it usually also involves
experts from the citizen community who provide advice regarding the societal impact of each
potential ownership transfer [Janssen, 2004]. In contrast to each potential buyer who faces a
value-for-money trade-off, the experts care only about societal value; their compensation is
unrelated to the ownership decision and instead depends on their reputation and experience
only. The government needs both parties for a successful transfer of the public assets and a
reasonable goal would be to maximize the social welfare, which aggregates the values of buyers

and experts for the ownership transfer.

A very similar situation occurs for private ownership transfers. Mergers and acquisitions
play a central role in the competition among private players in a market, and the rules or the
policies that dictate the mergers are often up for debate.? There is ample evidence to support the
fact that the transfer of ownership of an organization has a significant impact on the economy
of the employees and the customers [Auerbach, 2008, Hitt et al., 2001]. The current owner or
the administration can employ industry experts for their opinion on the transfer and ask the
potential buyers to quote their values. Similarly to the previous example, the administration
takes into account the input of both parties and social welfare maximization among them is a
reasonable goal. Furthermore, in the organization of sporting events, the bids of the potential
hosts are taken into consideration along with the recommendations of a respective sports
administrative body (for example, IOC for the Olympic Games, FIFA for the World Cup, and
FIA for Formula One).

Motivated by examples like the ones described above, we consider a setting where the
bidders offer monetary compensations (to buy into a new company or a government asset),
but the experts (the citizen representatives or the administrative body) do not. The objective
is to achieve the decision that maximizes the social welfare, which includes the cardinal values
of both the expert and the bidders. This is a hybrid social choice setting that blends together

classical social choice and classical mechanism design with money, but is distinct from both of

*EU data show that more than 6500 mergers have taken place in the EU since 1990, and strict rules are in effect
for mergers [European Commission, 2018].



them, thereby rendering celebrated solutions like the VCG mechanism insufficient.
Our contribution

In chapter 4, we study the fundamental version of the aforementioned ownership transfer
problem with one expert and two potential buyers, and provide tight approximation guarantees
of the optimal social welfare for many classes of truthful mechanisms. We distinguish between
mechanisms that use ordinal and cardinal information, as well as between mechanisms that
base their decisions on one of the two sides (either the buyers or the expert) or both. Our analysis
shows that the cardinal setting is quite rich and admits several non-trivial randomized truthful
mechanisms, and also allows for closer-to-optimal-welfare guarantees. These results can be

found in [Caragiannis et al., 2018].
1.4 Asymmetry of information in revenue maximization

Exploiting information asymmetries to maximize revenue dates all the way back to the seminal
work of Akerlof [1970] who considered such issues in the so-called market for lemons. Suppose
a market for cars including high-quality ones (which are known as peaches in American slang)
as well as low-quality ones that can be found to be defective only after they have been bought;
these are known as lemons (due to the sourness they cause to their buyers). In such a market,
the seller has much more accurate information about the quality of the cars, while the potential
buyers do not and cannot distinguish between peaches and lemons. This boils down to an
interesting strategic decision making problem from the seller’s side to find the best possible
way to exploit the situation and sell the items at a higher price than the one that could be set
if the buyers knew the whole truth. As expected, the work of Akerlof [1970] on information
asymmetry sparked subsequent research in economics [Crawford and Sobel, 1982, Levin and
Milgrom, 2010, Milgrom, 2010, Milgrom and Weber, 1982] and, recently, in computer science
as well [Dughmi, 2014, Emek et al., 2012, Ghosh et al., 2007, Guo and Deligkas, 2013, Miltersen
and Sheffet, 2012].

Following the work of Alon et al. [2013], we focus on randomized take-it-or-leave-it sales.
There are m items and n potential buyers. Each buyer has a value for each item, and she is
generally unaware of the existence of the other buyers and their values. In contrast, the seller
is assumed to know the values of the buyers for the items. According to some probability
distribution, nature selects a single item for sale at random, and this random choice is revealed

to the seller, but not to the buyers. Then, the seller approaches the highest value buyer and
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offers the item to her at a price that is equal to her value for it. A specific instantiation of this
setting could be the following: the items correspond to keywords and the potential buyers
correspond to advertisers. Every advertiser has a value for each keyword which represents
the maximum amount of money she is willing to pay in order to occupy the advertising space
that is allocated when the particular keyword is queried. The role of nature is played by users
who submit queries, and the role of the seller is played by the search engine, which allocates
the advertising space according to the keyword queried each time, and in such a way that its

revenue is maximized.

Can the seller exploit the fact that she has much more accurate information about the items
for sale compared to the potential buyers? In particular, information asymmetry arises since
the seller knows the realization of the randomly selected item whereas the buyers do not. A
possible approach is to let the seller define a buyer-specific signalling scheme. That is, for each
buyer, the seller can partition the set of items into disjoint subsets (bundles) and report this
partition to the buyer. For example, the search engine could bundle together keywords that
are closely related to each other. After nature’s random choice, the seller can reveal to each
buyer the bundle that contains the realization, thus enabling her to re-evaluate her beliefs for
the particular bundle (i.e., compute her expected value for the whole bundle and each item

therein).

Alon et al. [2013] introduced the asymmetric matrix partition problem as an abstraction of
revenue maximization in take-it-or-leave-it sales. Instances of the problem consist of an n x m
matrix A containing non-negative real values and a probability distribution over its columns.
A partition scheme B = (Bj, ..., By,) consists of a partition B; for each row i of A. The partition
B; acts as a smoothing operator on row ¢ that distributes the expected value of each partition
subset proportionally to all its entries. Given a scheme B that induces a smooth matrix A%, the
partition value is the expected maximum column entry of AB. The objective is to compute a
partition scheme such that the resulting partition value is maximized. The relation to take-it-
or-leave-it sales should be apparent: the columns of the input matrix correspond to items, the
rows correspond to potential buyers, and the value of the entry (i, j) corresponds to the value
that buyer 7 has for item j. After the bundling of the items for a specific buyer, the smooth
value of a bundle corresponds to the expected value the buyer has for each item included in the
bundle. Finally, the partition value corresponds to the expected revenue of the seller. Among

other results, Alon et al. [2013] proved that the problem is APX-hard even for the simplest case
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of binary matrices, and designed 0.563- and 1/13-approximation algorithms for the cases of

uniform and non-uniform probability distributions, respectively.
Our contribution

In chapter 5, we significantly improve both results of Alon et al. [2013]. We present a 9/10-
approximation algorithm for the case where the probability distribution is uniform and a
(1—1/e)-approximation algorithm for non-uniform distributions. Although our first algorithm
is combinatorial (and very simple), the analysis is based on linear programming and duality
arguments. In our second result we exploit a nice relation of the problem to submodular welfare

maximization. These results have been published in [Abed et al., 2018].
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Chapter 2

The efficiency of resource allocation
mechanisms for budget-constrained
users

In this chapter we present our results on the efficiency of resource allocation mechanisms for
users with budget constraints, as they were published in [Caragiannis and Voudouris, 2018];

see the discussion in Section 1.1 for a comprehensive introduction to the problem.
2.1 Overview of contribution and techniques

We aim to explore all resource allocation mechanisms to find the one with the best possible
LPoA. Our results suggest a drastically different picture compared to the no-budget setting.
First, the analogue of full efficiency is not achievable; we show a lower bound of 2 —1/n on the
LPoA of any n-player resource allocation mechanism (under standard technical assumptions
for player valuations and mechanism characteristics). We prove that the Kelly mechanism has
an almost best possible LPoA of exactly 2, while the Sanghavi and Hajek (SH) mechanism has
an LPoA of 3. Improved bounds are possible for two players. We design the two-player pay-
your-signal (PYS) resource allocation mechanism E2-PYS that has an LPoA of 1.792; this bound
is optimal among a very broad class of mechanisms. We also design the two-player mechanism
E2-SR that achieves an almost optimal LPoA bound of at most 1.529; this mechanism uses

different payments. See Table 2.1 for a summary.

Our results exploit a particular structure of worst-case (in terms of LPoA) games and their
equilibria. We prove that for every resource allocation mechanism, the worst-case LPoA is
obtained at instances in which players have affine valuation functions. In addition, all players

besides one have finite budgets and play strategies that imply payments that are either zero or
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Mechanism LPoA Comment

all >2—1/n No mechanism can achieve full efficiency (Theorem 2.1)

Kelly 2 Tight bound; almost optimal among all n-player mechanisms
(Theorem 2.5)

SH 3 Tight bound (Theorems 2.6 and 2.7)

E2-PYS 1.792 Tight bound (Theorem 2.8); optimal among all 2-player PYS
mechanisms with concave allocation functions (Theorem 2.9)

E2-SR 1.529 Almost optimal among all 2-player mechanisms (Theorem 2.10)

Table 2.1: Summary of our liquid price of anarchy bounds for resource allocation mechanisms

for budget-constrained users; see [Caragiannis and Voudouris, 2018].

equal to their budget, while a single player has infinite budget and a signal that nullifies the
derivative of her utility. Compared to an analogous characterization for the no-budget case
(with linear valuation functions and player signals that all nullify their utility derivatives),
tirst observed by Johari and Tsitsiklis [2004] for the Kelly mechanism and later extended to all
resource allocation mechanisms, the structure in our characterization is much richer and the
proof is considerably more complicated. The characterization contains so much information
that the LPoA bounds follow rather easily; the extreme example is the proof of our best LPoA
bound of 2 for the Kelly mechanism which is only a few lines long. It can also be used in the
design of new mechanisms; for example, the design and analysis of our two-player mechanisms
E2-PYS and E2-SR follow by simple first-order differential equations, which would never have
been identified without our characterization. And, furthermore, under assumptions about the
resource allocation mechanisms (e.g., concave allocations and convex payments), the LPoA
bound is automatically proved to be tight without the need to provide any explicit lower bound

instance.
2.1.1 Chapter roadmap

The rest of the chapter is structured as follows. We begin with a discussion of other related
work in Section 2.2. Then, we continue with preliminary definitions, notation and examples
in Section 2.3. Our unconditional lower bound on the liquid price of anarchy of any resource
allocation mechanism appears in Section 2.4. Section 2.5 is devoted to proving the structural
characterization of worst-case resource allocation games and equilibria. Then, in Section 2.6
we present tight bounds on the liquid price of anarchy for the Kelly and SH mechanisms. In
Section 2.7, we present our two-player mechanisms E2-PYS and E2-SR. Finally, we present

some interesting extensions of our work in Section 2.8 and conclude in Section 2.9.
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2.2 Related work

As an efficiency benchmark, the liquid welfare has been studied recently in many different
contexts such as in the design of truthful mechanisms (see [Dobzinski and Paes Leme, 2014, Lu
and Xiao, 2015, 2017]) and in the analysis of combinatorial Walrasian equilibria with budgets
[Dughmi et al., 2016]. In the context of the price of anarchy, it was considered in simultaneous

first price auctions by Azar et al. [2017] and in position auctions by Voudouris [2018].

Caragiannis and Voudouris [2016] were the first to prove that the LPoA of Kelly is constant.
In particular, they showed upper and lower bounds of 2.78 and 2, respectively. The lower
bound is essentially proved again here (see Theorem 2.5) with a completely different and more
interesting technique. Christodoulou et al. [2016b] improved the LPoA upper bound to 2.618
and extended the results to more general settings involving multiple resources. Prior to these
two papers, Syrgkanis and Tardos [2013] proved that the social welfare at equilibria of the Kelly

mechanism is at most a constant factor away from the optimal liquid welfare.

In contrast to the analysis techniques of this chapter, the analysis of the Kelly mechanism
by Caragiannis and Voudouris [2016], Christodoulou et al. [2016b] and Syrgkanis and Tardos
[2013] is closer in spirit to the smoothness template [Roughgarden, 2015, Roughgarden et al.,
2017] and is based on bounding the utility of each player by the utility she would have when
deviating to appropriate signals. Their results extend to more general equilibrium concepts
such as coarse-correlated or Bayes-Nash equilibria. Our LPoA bounds here hold specifically

for pure Nash equilibria, but are superior and tight.
2.3 Definitions and notation

We consider a single divisible resource of unit size that is distributed among n users by a

resource allocation mechanism M. The mechanism M consists of

* an allocation function g™ : R%, — QUO, where Q = {d € [0,1]" : 7" | d; = 1} is the unit

n-simplex and 0 = (0, ...,0), and
* apayment function p™ : RY, — RY,,

and works as follows. Each user i submits a signal s; € R>(, and the mechanism M allocates
a fraction of g} (s) of the resource to each user i and asks her for a payment of p} (s), where

s = (81, ..., Sp) denotes the vector formed by all signals.
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Some important properties of allocation and payment functions are as follows:

* They are anonymous: any permutation of the entries of the input signal vector results in
the same permutation of the output. So, all users get equal resource shares and are asked

for equal payments when they submit identical signals;

* The mechanism does not allocate any fraction and does not ask for any payment from a

user that submits a zero signal;

* By convention, when some user is the only one with a non-zero signal, she gets the whole

resource and is asked for a payment of zero.

Let (y,s—;) denote the signal vector in which user i has signal y and the remaining users have
their signals as in s. Viewed as univariate functions (of variable y), the functions ¢ (y,s_;) and

pM(y,s_;) are increasing and differentiable in R (with the exception of (y,s_;) = 0).

Each user 7 has

* a monotone non-decreasing, concave, and differentiable  valuation function v; : [0,1] —

R>; vi(x) represents the value that user 7 has for a resource fraction of z;

* abudget c; € R>oU{+00}, whichrestricts (upper-bounds) her payment to the mechanism.

Her utility from the mechanism is defined as the value she gets for the fraction she is given
minus her payment, i.e.,

ui! (s) = vi (91" (s)) — Pl (s).
To capture the fact that budgets impose hard constraints to the users, we technically assume
that u} (s) = —co when pM(s) > ¢;.

The users act strategically as utility maximizers and, therefore, engage as players into a
strategic resource allocation game G that is induced by mechanism M. A (pure Nash) equilibrium
is a signal vector s such that, when viewed as a univariate function of variable y, uf” (y,8-4)
is maximized for y = s;, i.e., no player can increase her utility by unilaterally deviating to
submitting a different signal. We denote by eq(G*) the set of all equilibria of game G By the
definition and properties of the allocation and payment functions, the signal vector 0 cannot

be an equilibrium as (by the conventions mentioned above) any player has the incentive to

'We remark that our results hold for semi-differentiable valuation functions as well. However, the proof of our
characterization (Lemma 2.2) is technically more involved. So, the differentiability assumption keeps the exposition
simple.
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unilaterally deviate and get the whole resource without paying anything. We use X, as an

abbreviation of the set R%, \ {0}.

Due to the budget constraints, we have three different cases for the strategy of player i at
an equilibrium s € eq(G*) (assuming a non-trivial budget ¢; > 0) and for the corresponding

8“‘1]” (yvs—i)

value of the derivative of her utility. In particular, the derivative ——= is equal to zero

y=s;
in case s; is such that 0 < pfw (s) < ¢;, non-positive in case s; = 0, and non-negative in case s; is
such that p (s) = ¢;. Note that nullification of the utility derivative does not necessarily imply

maximization of utility.

We are interested in studying the effect of the strategic behavior to the efficiency of resource
allocation mechanisms. An efficiency benchmark that has been used extensively in the related
literature is the social welfare. For an allocation d € Q U 0 of a resource allocation game GM  the

social welfare is defined as
w(d, G") = Z'Ui(di)7
i=1

where n is the number of players in GM and v; is the valuation function of player i. Then, the
inefficiency of equilibria of game G can be measured by its price of anarchy which is defined

as

SW*(G")
PoA(GM) =
0A(GT) s@s;gM) SW(gM(s),GM)’

where SW*(GM) denotes the maximum social welfare over all allocations of GM.

However, the definition of the social welfare does not take into account the possibly finite
budgets that the players may have. Therefore, we instead use the liquid welfare as our efficiency

benchmark. The liquid welfare of an allocation d is defined as
LW(d,6") = > min{v;(d;), c;},
i=1

where ¢; is the budget of player . Clearly, when players have no budget constraints, the liquid
welfare coincides with the social welfare. The liquid price of anarchy of a resource allocation

game GM is then defined as

LW*(GM)
LPoA(GM) = 7
A, W (g (5).6™)

where LW*(GM) denotes the maximum liquid welfare over all allocations of game G*. We use
the overloaded term LPoA (M) to denote the liquid price of anarchy of the resource allocation
mechanism M. This is defined as the maximum (or, more formally, the supremum) liquid price

of anarchy over all games that are induced by mechanism M.
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2.3.1 Examples of resource allocation mechanisms

Let us devote some space to the definition of some well-known mechanisms from the literature.
An important class of resource allocation mechanisms is that of pay-your-signal mechanisms
(PYS, for short). When at least two players submit non-zero signals, a PYS mechanism charges
each player ¢ a payment equal to the signal s; that she submits. Otherwise, PYS mechanisms
follow the general convention that we have defined at the beginning of Section 2.3, and do not

charge any payment to any player.

The most popular PYS mechanism is the Kelly mechanism that was introduced in Kelly
[1997]. This mechanism allocates the resource proportionally to the players’ signals (this is why
it is also known as the proportional allocation mechanism in the related literature), i.e.,

Kelly Si
;o (8) =

E?:l 85

The Kelly mechanism has played a central role in the related literature; for the no-budget
setting, Johari and Tsitsiklis [2004] proved that its price of anarchy is 4/3. In their attempt
to design the PYS mechanism with the lowest possible price of anarchy, Sanghavi and Hajek

[2004] defined the allocation function

g (s) maxe{se}/ H< maXe{Se} ) 4

We will refer to the PYS mechanism that uses this allocation function as SH. For two players,
the allocation function has a very simple definition as gSH(s) = 2871 when s;1 < sy, and
gH(s) = 1 - 22 - otherwise. Sanghavi and Hajek [2004] proved that the two-player version
of the SH mecharusm has an optimal (among all PYS mechanisms) price of anarchy of 8/7
and provided experimental evidence that the price of anarchy of the n-player version is only
marginally higher. As we will see later in Section 2.6, the comparison between Kelly and SH
yields a drastically different result when players have budgets and the liquid welfare is used

as the efficiency benchmark.

Other interesting classes of mechanisms use proportional allocation, but different kinds of
payments. Among them, a mechanism defined by Maheswaran and Basar [2006] uses the class

of payment functions

5 hM(t"’Zj i S5)
pie) = (Zsﬂ') g S SR

J#i
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where hM : R>y — R is an increasing function (such as h*(z) = 2; Maheswaran and Basar
[2006] suggest several other choices for h*). These mechanisms have the remarkable property
of full efficiency at equilibria in the no-budget setting (i.e., they have price of anarchy equal to
1). Independently from Maheswaran and Basar [2006], Johari and Tsitsiklis [2009] as well as
Yang and Hajek [2007] presented resource allocation mechanisms that achieve full efficiency
in the no-budget setting. All these mechanisms can be thought of as adaptations of the well-

known VCG paradigm.
24 A lower bound for all mechanisms

The fact that the mechanisms of Maheswaran and Basar [2006], Johari and Tsitsiklis [2009], and
Yang and Hajek [2007] achieve full efficiency seems quite surprising, since resource allocation
mechanisms do not have direct access to the valuation functions of the players. The definition
of these mechanisms is such that the incentives of the players are fully aligned to the global
goal of maximizing the social welfare. In a sense, these mechanisms manage to achieve access
to the valuation functions indirectly. In contrast, when players have budget constraints, we
show below that a liquid price of anarchy equal to 1 is not possible. This means that resource
allocation mechanisms fail to “mine” any kind of information about the budget values of the

players, while budgets affect the strategic behavior of the players crucially.

Theorem 2.1. Every n-player resource allocation mechanism has liquid price of anarchy at least 2—1/n.

Proof. Let M be any n-player resource allocation mechanism that uses an allocation function
g™ and a payment function p™. Let s = (s1, ..., s,) be an equilibrium of the game G} induced
by M for players with valuations v;(z) = x and budgets ¢; = +oo, for every i € [n]. Assume
that the allocation returned by M at this equilibrium is d = (dj, ..., d,,). Since all players have
the same valuation function and budget, the liquid (or social) welfare at equilibrium is optimal
and, hence, LPoA(GM) = 1.

Recall that, for every signal vector y = (y1,...,y»), the utility of player i is defined as

uM(y) = vi(gM(y)) — pM(y). Now, let i* = argmin; d; (hence, d;» < 1/n) and consider the
game G427 where each player i # i* has the modified valuation function @;(z) = d; + x and

budget & = d;, while player i* is as in G (see Figure 2.1). Observe that the modified utility of
player i # i* as a function of a signal vector y is now @ (y) = 9;(¢M (y)) —pM(y) = uM (y) + d..
Also, since the utility of player i # i* is non-negative at the equilibrium s of game G}, we have

that p} (s) < d; = ¢, meaning that player i can also afford this payment in game GJ/. Hence, s
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Figure 2.1: A graphical representation of the games used in the proof of Theorem 2.1. The two
figures depict the valuation functions of players i* and i # i* in games G} and GJ!. The blue
points (i.e., point (d;=, d;+) in the left figure, and points (d;, d;) and (d;, 2d;) in the right figure)
represent the equilibrium in both games, and the optimal allocation in game Gi/. The optimal
allocation in G is represented by the red points (i.e., point (1,1) in the left figure and point

(0, d;) in the right one).

is an equilibrium in G37 as well (and, again, M returns the same allocation d).

Its liquid welfare is ), min{?;(d;), ¢} = ), d; = 1 while the optimal liquid welfare is at
least 1+ >, ;. d;, achieved at the allocation according to which the whole resource is given to
player i*. Hence, we conclude that the liquid price of anarchy of M is LPoA(M) > LPoA(G3) >
1+ Zi#* d; =2 —dj+ > 2 —1/n, as desired. O

2.5 The structure of worst-case games and equilibria

In this section, we prove our structural characterization. Given an n-player resource allocation
mechanism M (with allocation and payment functions g™ and p, respectively), signal vector
s € X,,, and an integer j € [n], define the n-player game G (s, j) as follows. Every player has

the affine valuation function 9;(2) = A (s) - z + kM (s) and budget ¢;, where

)\M(S) _ <agz!v[(yas—i) >_1 . 8prfw(yas—z)
Y=si

i Ay oy y=s;
and H;M(S) =0, ¢ = +oo, and kM (s) = & = pM(s) for every player i # j.
In the following, we show that the games defined in this way are in a sense extreme in terms

of the liquid price of anarchy of mechanism M.

Lemma 2.2. Let GM be an n-player resource allocation game that is induced by a mechanism M with

LPoA(GM) > 1. Let s € X, be an equilibrium of GM of minimum liquid welfare. Then, there exists
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integer i* € [n| such that

LW(x,GM(s,i*))
LPoA(G) < LW(gM (s),GM (s, i*))

B D istin p(s) + X (s)
B Ditir Pt (s) + A} (s) - g (s)’

where X = (Z1, ..., T,) denotes the allocation with Z;» = 1 and &; = 0 for i # i*.

Proof. Consider an n-player resource allocation game GM that is induced by mechanism M.
Let v; and ¢; be the valuation function and budget of player i, respectively. Let s € X,, be the
equilibrium of game GM of minimum liquid welfare. We denote by x the optimal allocation
in GM. Without loss of generality, we assume that, for every player i, z; = 0 if v;(0) > ¢
and v;(z;) < ¢; otherwise, and we relax the allocation definition to Z?Zl z; < 1; this does
not constrain the optimal liquid welfare which is LW(x,GM) = > min{v;(z;), ¢;}. We use

d; = gM(s) for the resource fraction allocated to player i in s; let d = (dy, ..., dy,).

We partition the players into the following three sets:

* Set A consists of players i with v;(d;) < ¢; and signal s; such that the derivative of their

utility is equal to 0.

* Set B consists of players ¢ with signal s; = 0 (hence, d; = 0) and negative utility derivative

such that v;(0) < ¢;.

* Set I consists of players i with signal s; such that v;(d;) > ¢;.

First, observe that sets A and B cannot be both empty, since it would then be LW(d, G¥) =
> iepn) G = LW(x, GM), and the liquid price of anarchy of G would be exactly 1, contradicting
the assumption of the lemma. So, in the following, we assume that at least one of A and B is

non-empty.

Now consider the games G" (s, j) for j € [n] and let i* = argmax; ., ,z{\}’(s)}. We will

show that
LW(d, G") > LW(d, G (s, i%)) (2.1)
and we will furthermore show that the allocation x satisfies
LW(x,GM) —LW(x,GM (s,i*)) < LW(d, 1) — LW(d, GM (s, i*)). (2.2)
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In this way (recall that s is the equilibrium of minimum liquid welfare in game G and d is the

resulting allocation), we will have

LW(x, G{
LPoA(G]) = LWE(’; o )
» I1

_ D intin P (s) + A (s)
Xz P (8) + MM (s) - g2 (s)

as desired. The inequality follows by (2.1) and (2.2). The last equality follows since all players

in GM (s, i*) besides i* have always their value capped by their budget, which is equal to their

payment.

Inequality (2.1) is due to the fact that the contribution of each player to the liquid welfare
at s can only decrease between the two games. Indeed, if player i* belongs to B, she has zero
value in game G (s, i*). If she belongs to A, then her utility derivative is nullified and, hence,
vl (d+) = AM(s). Due to the concavity of v;, we get vy (di+) > di= vl (dix) = dix AM (8) = D (di»).
Moreover, the contribution of player i # i* in LW(d, G (s,i*)) is & = p}(s) which is at most
her contribution min{v;(d;), ¢;} in LW(d, G) since the payment of player i cannot exceed her

budget in G and her utility at equilibrium s is non-negative. See Figure 2.2 for a graphical

representation of valuation functions and budgets in games G and G (s, i*).

Let
§(i) = min{v;(z;), ¢;} — min{v;(2;), ¢} — min{v;(d;), ¢;} + min{v;(d;), &}
denote the contribution of player i to the expression
LW(x,GM) — LW(x,GM(s,i*)) — LW(d, GM) + LW(d, GM (s, i*)).
Then, in order to prove inequality (2.2) it suffices to prove that >, §(:) < 0.

* For player ¥, we have that v;«(d;+) < ¢+. Using the inequality v (zi+) < vi=(di+) +

Uk (di+) (zi= — di+) due to the concavity of the valuation function v;- and the fact z;+ = 1,

we have that

§(i*) = min{v;s (w4 ), cir } — A (8)Z4x — vix (dir) + MM (s)d;»
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Cix |- o vie(2)

03+ (2)

v (dji) 9 i* € B| |
i€B

v;(2)

vi(d;)9 iel | |
Ci - case 1| |

case 3

0 d; 1
Figure 2.2: Relation between the two games G and G (s,4*) that are used in the proof of
Lemma 2.2. In the first two plots, player 7 is different than ¢* and the budget ¢;+ is infinite by
definition. The dashed line is the tangent of v; at d;. The slope A\M(s) of the affine valuation
function of player i in GM (s, i*) is greater than (upper right and middle left plots), equal to
(upper left and middle right plots), or smaller than (lower plot) v}(d;) depending on whether
the utility derivative of the player is negative, zero, or positive, respectively (in particular,
these are the three cases identified in the plots for i € I'). This follows by the definition of

games g{M and gM (s,i*) and the fact that, as the utility of player i in game Q{VI has derivative

vi(d) 2pet| | i)
y=si

the sign of v/(d;) — AM(s).

)

at equilibrium, the sign of this derivative coincides with
y=s;
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< v (dis ) (e — din) — AN (s) + AM (s)dj-.

Now, we observe that (for such observations, we follow the reasoning in the caption of
Figure 2.2) if player i* belongs to A, then A (s) = .. (d;+), while if she belongs to B, then
M(s) > vl (di+) and d;« = 0. In any case, we have that v}, (d;+)(z+ — di=) < AM(s)(z;+ —

d;+), and we obtain

5(i*) < AM(s) (24 — 1). (2.3)

For all players i # i*, observe that their value is always capped by their budget in
GM(s,i*). For player i # i* belonging to A or to B we have that either \M(s) = v/(d;)
(ifi € A), or \M(s) > v!(d;) and d; = 0 (if i € B). Hence, using the concavity of v; and the

fact that Z; = 0, we obtain that

(5(1) S vz(xz) — 51‘ — Ul(dz) + 61'
< voi(di) + A (s) (s — di) — vild)

< )‘i\*/[ (S)x%

(2.4)

where the last inequality follows since A (s) < A (s), due to the definition of player i*.

Otherwise, if 7 € ', we have

(5(2) = min{vi(xi),ci} —¢ —c+¢ <O0.

(2.5)

Hence, summing over all players, and using inequalities (2.3), (2.4) and (2.5) as well as the fact

that ), 2; <1, we obtain ), 6(i) < 0, and the proof is complete.

We are now ready to prove the main result of this section.

O

Lemma 2.3. Let M be an n-player resource allocation mechanism with allocation and payment

functions g™ and pM, respectively. Then, its liquid price of anarchy is

2in2 P (s) + AV (s)
> (s) ]’

LPoA(M) < sup
i>2 pf\/l(s) + )‘{VI(S) 9{\/[

seX,,

where

A{W(S) _ (89{\4(% S—l)

—1
. ap{w (y7 S—l)
ay Yy=s1

dy

Yy=s1

If, in addition, s € X,, is always an equilibrium of game GM (s, 1), (2.6) holds with equality.
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Proof. Let weq(G™) be the set of equilibria of minimum liquid welfare in game G. Using the
definition of the liquid price of anarchy, Lemma 2.2, and the anonymity of resource allocation

mechanisms, we have

LPoA(M) = sup LPoA(GM)

oM
=sup sup LW*(GY)

GM scweq(GM) LW(gM(s),GM)
= sup sup LW*(G")

seX, M seweq(g™) LW (9™ (8), )
< sup max Ditir P (s) + A (s)
sex,, ©*Eln] Yizix P} (8) + A (s) g} (s)
~ sup Diz2 P (s) + A (s) .
seXn Zizg pZM(s) + /\{V[(S) Q{VI(S)

Now, if s € eq(GY (s, 1)) for every s € X, by just considering the games G (s, 1) induced by
mechanism M, we have
LPoA(M) > sup LPoA(GM (s, 1))

SEX’VL
> sup > i>2 P (s) + A (s)
T seX, Duin2 pM(s) + A (s) g1 (s)

and (2.6) holds with equality. The last inequality follows by comparing the liquid welfare at s

to the liquid welfare of the allocation which gives the whole resource to player 1. Recall that all

players besides player 1 have always their value capped by their budget in game G (s, 1). O

Lemma 2.3 is extremely powerful. It essentially says that no game-theoretic reasoning is
needed anymore for proving upper bounds on the LPoA and, instead, all we have to do is to
solve the corresponding mathematical program. Furthermore, it can be used to prove lower
bounds on the LPoA without providing any explicit construction. In this case, we just need to
show that the condition s € eq(GY (s, 1)) holds; then the tight lower bound follows by solving

the same mathematical program.

Before we continue with the rest of our results, we define the class C of mechanisms M
that use concave allocation functions g* and convex payment functions p™. Observe that both
Kelly and SH (as well as the E2-PYS mechanism presented in Section 2.7) are members of this
class. With our next lemma, we prove that the condition s € eq(G" (s, 1)) is satisfied for any C

mechanism M. This will allows us to prove lower bounds in the upcoming sections.
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Lemma 2.4. For any n-player resource allocation mechanism M € C and s € X,,, s € eq(GM (s, 1)).

Proof. Consider any C mechanism M that uses a concave allocation function g™ and a convex
payment function p*. By the definition of game G (s, 1), the utility of any player i, as a function

of her signal y, is u} (y,s_;) = A\M(s) - g™ (y,s-:) + kM (s) — pM(y,s_;) and its derivative is

99 (y,s-1) 9} (y,5-1)
Oy oy ’

ou! (y,s-)

_ M
ay _)\Z (S)

Observe that, by the definition of A\ (s), the signal s; nullifies the utility derivative of player i,

and since
2, M , 2, M , 2, M
9 u; (y7s—l) _ )\i\/[(S)a 9; (yas—l) _ 0 p; (ya S_1) <0,
0y? 0y? 0y?
this signal actually maximizes the player’s utility. O

2.6 Pay-your-signal mechanisms

In this section, we will exploit Lemma 2.3 to prove tight bounds on the liquid price of anarchy
of the Kelly and SH mechanisms. Our LPoA bounds are 2 for Kelly (Theorem 2.5) and 3 for
SH (Theorems 2.6 and 2.7). Recall that both of these mechanisms belong to class C and, by

Lemma 2.4, the condition s € eq(GY (s, 1)) is satisfied.

Theorem 2.5. The liquid price of anarchy of the Kelly mechanism is 2.

Proof. Consider any signal vector s € X,,, and let C' =} .., s;. Since Kelly is a PYS mechanism,

we have that 3 -, pfeuy(s) = (Cand
Kell
aple y(y7s—1) =1
dy '

By the definition of the allocation function g§<elly(y’ s_1) = yJ%C, we have that

aglfell}’(y’ S*l) _ C

dy (y+C)?

Also, since the mechanism belongs to class C, by Lemma 2.4, we have that s € eq(GXV (s, 1)).

Hence,
Kell s1+ C)?
/\1e Y(s) _ ( C )

and Lemma 2.3 yields

C+(s1+0)%/C
LPoA(Kelly) = su
(Kelly) R CF (511 C)sy)C
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20?2 +2s51C + S%
= Ssup 5 3
$1,C0>0 C + 510 + Sl

s
=sup (2— ——"———>
31,c§o< C? +slc+s%)

=2,

as desired. O

Notice that our proof of Theorem 2.5 is surprisingly short. The proof exploits Lemma 2.3
with (2.6) holding with equality and, as such, it simultaneously provides a tight (upper and
lower) bound. In contrast, our analysis for the SH mechanism is slightly more involved. This
is mainly due to the more complicated definition of the allocation function (see Section 2.3),
which requires us to distinguish between two cases, depending on whether s; < max, s, or
not. Both cases lead to inequalities that provide only an upper bound on the LPoA of SH in the
proof of Theorem 2.6. In Theorem 2.7, we easily prove a matching lower bound by restricting
our attention to the 2-player version of the mechanism. Actually, the proof can be thought of
as providing a tight (i.e., not only lower, but also upper) bound on the LPoA of the 2-player

version of the SH mechanism.

Theorem 2.6. The liquid price of anarchy of the SH mechanism is at most 3.

Proof. We will use Lemma 2.3 and upper-bound the ratio in the RHS of (2.6) by 3. Define C' =
2222 s;. First, let s € X, with s; < max, s,. Let argmax, sy = i* # 1. Then, by the definition of

SH and the definition of A;'(s) in (2.6), we have

AH(s) =
fol Hi22 (1 - ;;1 t) dt

and using the Bernoulli inequality stating that 1 — ¢ > (1 —¢)? for¢t < 1 and v € [0,1], (2.7)

2.7)

yields

S;* Sj*
AH(s) < : = e =5+ C.

- fol HiZQ (1 —t)%= dt fol (1—t)% dt

Since SH is PYS, 3+, piti(s) = C. Using this observation together with the last inequality, we

obtain

din2 pi(s) + ATH(s) < 2C + s
Yo D (s) + XH(s) giti(s) = C

The inequalities follow since A (s) g7ti(s) > 0, s; > 0, and s;« < C.

<3. (2.8)
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Now, let s € X,, with s; = maxy sy. In this case, gSH(s) is defined as

SR G

and
091" (v 5-1) (y’s ) / <1— ]t> dt
>ZS’/tH 1—t81
1>2 0 J#L,
_ZS’/ Hl—t) o dt
i>2

_Z C — s+ s1) (C—SZ‘+281)

1>2
C
> .
- (C + 81)(C + 251)

Using the definition of A$(s) in (2.6), this last inequality implies that

)\?H(S) S (C+81)(C+281). (29)
C
Also, by applying the Bernoulli inequality to the RHS of the definition of ¢7"(s), we obtain
/ IT¢ (1— )% dt = / (1—f) dt = =+, (2.10)
1>2 ¢ 81

Now, we have
Do)+ XS) _ C24(C+s1)(C+2s1)
Yisa D7 (8) + AT (s) g7t (s) T C% + (C + 51)(C + 251) g7 (s)
20? 4 35,C + 252
< < 3. 211
B 02—|—510—|—25% - ( )

The two first inequalities follow by (2.9) and (2.10), respectively, and the last one is obvious

since s1,C' > 0.

Now, the upper bound follows by Lemma 2.3 using (2.8) and (2.11). O

Theorem 2.7. The liquid price of anarchy of the SH mechanism is at least 3.

Proof. It suffices to restrict our attention to the 2-player version of the mechanism. Let s € X,

with s1 < s9. In this case g?H(s) = 23712 which implies that )\?H(s) = 259. Since the SH mechanism

belongs to class C, by Lemma 2.4, we have that s € eq(G°(s, 1)). Using Lemma 2.3, we obtain
382

LPoA(SH) >  sup =3
s€X9:51 <82 s2 + 81

The proof is complete. O
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2.7 Two-player mechanisms

As we saw in Theorem 2.5, the Kelly mechanism has an LPoA of exactly 2 even in the case of
two players. In contrast, our lower bound of 3/2 for 2-player mechanisms in Theorem 2.1 seems
to leave room for improvements. Such improvements are indeed possible as we show with the
mechanisms that we present in this section. Interestingly, the E2-PYS mechanism that is defined
in the following is also proved to have optimal LPoA among all 2-player PYS mechanisms with

concave allocation functions.
2.7.1 The E2-PYS mechanism

Let 5 ~ 1.792 be the solution of the equation % - %exp <—%> = 1 and define mechanism
E2-PYS to be the PYS 2-player mechanism that uses the allocation function

11 B ; . '
E2-PYS B B exp (_ B—1" S:ii) 5; < 83—
9i (s) = 41

e (it )
for player i € {1,2} and (non-zero) signal vector s = (si,s2). Due to the definition of 5,

E2-PYS is a well-defined resource allocation mechanism: it is anonymous, with an increasing
and differentiable allocation function, which allocates the whole resource when some player
has non-zero signal. Moreover, E2-PYS belongs to class C: the allocation function can be seen
to be concave (see also Figure 2.3) and the payment function is, of course, convex. The LPoA

bound statement for E2-PYS follows.

Theorem 2.8. The liquid price of anarchy of the E2-PYS mechanism is 3 ~ 1.792.

Proof. We will prove the theorem using Lemma 2.3. Let s € Xy. Due to Lemma 2.4, we have that
s € eq(gEz‘PYS(s, 1)). Since E2-PYS is a PYS mechanism, we have that p{Q‘PYS(s) = s1, which
yields

OpFTYS(y, s2)
dy

y=s1
Next, we distinguish between two cases. First, assume that s; < s9; in this case, the allocation

of player 1 is

o=~ Lo (52 2)
’ g B B—1 s2

and, thus, the derivative is equal to

0 (5| _ 1 (252),

E2-PYS
g1 (



Therefore, \F2TY5(s) is defined as

AP2PYS () = (B — 1)sgexp <5€ T 2) .

By substitutin pE2 PYS(g) N\EZPYS(g) and gE2 PYS(g) in (2.6), we obtain
y 2] 1
B
pgz-Pys(s) + )\lliz-PYS(s) _ sy + (B —1)syexp (T . é) .,
p12€2-PYS(S) T )\IIEZ-PYS(S) g{:z-PYs(s) oy + 55 5 exp( B ) ( exp( % . %»
(2.12)
For the second case where s; > so, we have that
5 -1 1 I} s
g}lzszS(slaSQ): 5 +Bexp _6—1 i
and
A9 (y, s2) - B, <_ g S2>

oy y—s, (B— 1)s? -1 s

Now, it is
E-pys, .y _ (B —1)s? B s

AL (s) = o exp 715 )

By substitutin pE2 PYS(g) N\EZPYS(g) and gE2 PYS(g) in (2.6), we obtain
Yy g 1
2
_ s1 B s
PETYS(s) + APYS(s) 1+ (-1 (3) exp (51 3) <8
E2-PYS E2-PYS E2-PYS oy 2 2 =P
Dy (s) + A1 (s) g (s) B+ (8—1)2 (%> exp (% . %) +(B—1) (%)
(2.13)

The inequality follows since the quantity at its left is decreasing in s;/s; (its derivative with
respect to s;/s2 can be shown by tedious calculations to be non-positive for s;/s2 > 1) and,

hence, it is upper-bounded by its value for s;/s2 = 1; this is equal to j by its definition.

The theorem follows by Lemma 2.3 using (2.12) and (2.13). O

We remark that a preliminary analysis similar to the first half of the proof of Theorem
2.8 inspired the design of the E2-PYS mechanism (as well as that of E2-SR mechanism that
is defined later) at first place. By keeping the allocation function as the unknown and requiring
that the RHS of (2.6) is equal to some value « for all signal vectors s € Xy with s; < sy (this is
essentially what (2.12) captures), we obtained a first-order differential equation which, using
the appropriate conditions so that the resulting mechanism is valid, led to E2-PYS (for a = f).
Luckily, for signal vectors s € Xy with s; > so, we were able to show that the RHS of (2.6) is at

most «; see inequality (2.13).
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We now show that E2-PYS has optimal LPoA among 2-player PYS mechanisms in class
C. The proof makes use of Lemma 2.3 and a simple differential inequality that involves the

allocation function.

Theorem 2.9. Any 2-player PYS mechanism with concave allocation function has liquid price of

anarchy at least 8 ~ 1.792.

Proof. For the sake of contradiction, assume that there exists a PYS mechanism M that has
liquid price of anarchy 5’ < f. Denote by f : R>o — [0,1] the function defined as f(y) =
g (y,1). Then, by applying Lemma 2.3 with s = (y,1) € X3 to M we have A\M (y,1) = 1/f'(y)
and LPoA(M) > %% for every y € [0, 1]. By our assumption LPoA(M) < 5/, we get the
differential inequality

B =Df'y)+8'fly) =1

for every y € [0,1]. Using Gronwall’s inequality, f(y) is lower-bounded by the solution of the

corresponding differential equation. Due to the condition f(0) = 0, this yields

and, hence,

1 1 1 B 11 B
SRR ﬂ’eXp< 6’—1>>6 ﬁeXp< 5—1)’
1

which contradicts the definition of 3. The last inequality follows since the function ; —

Lexp (— Zfl) is decreasing in the interval [1, 2]. O
2.7.2 The E2-SR mechanism

Let us now define a non-PYS mechanism that has considerably better LPoA than E2-PYS and
almost matches the lower bound of 3/2 from Theorem 2.1 for 2-player mechanisms. Let v ~
1.529 be the solution of the equation % - % exp (— ﬁ) = 1 and define mechanism E2-SR to
be the 2-player mechanism that uses the allocation function (see Figure 2.3 for a comparison of

the allocation functions of Kelly, SH, E2-PYS, and E2-SR)

2
E2-SR v exp < 2(y-1) (8377;) > 8; < 834
” (S) B —1 1 sa )2
%—i—;exp <_2(7fy—1)< :Z) > 8; > 83_;

E2-SR

%

and the payment function p (s) = si/s3—; for player i € {1,2} and (non-zero) signal vector

s = (s1, s2). By the general conventions of Section 2.3, the payments are 0 when some of the
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1/2

allocation
-

signal ratio

Figure 2.3: A comparison of the allocation function g} used by E2-PYS (in green), (the 2-player
version of) Kelly (in blue), SH (dashed), and E2-SR (in red) as a function of s;/s3_; for s; < s3_;.

Among these mechanisms, E2-SR is the only one with a non-concave allocation function.

signals is equal to zero. Due to the definition of v, E2-SR is a well-defined resource allocation
mechanism. However, observe that E2-SR does not belong to class C (the allocation function
is not concave; see Figure 2.3) and the condition s € eq(GF¥*5R(s, 1)) is not guaranteed to be
satisfied. Next, we will prove an upper bound on the LPoA of E2-SR. The proof follows in a

similar way to the proof of Theorem 2.8, but it does not provide a tight bound.

Theorem 2.10. The liquid price of anarchy of the E2-SR mechanism is at most y ~ 1.529.

Proof. We will prove the theorem by mimicking the proof of Theorem 2.8. Let s € X,. Again,

we distinguish between two cases. First, assume that s; < sy. Then, since

O 82)=l—lexp 5. (51>2
’ vy 2(y—=1) \s2 ’

the derivative of the allocation for player 1 is

99> R (y, s2) __ s exp | — v <51>2 '
Iy y=s1 (7 - I)S% 2(y - 1) 52

Also, since the payment function used by E2-SR is equal to the signal ratio, its derivative for
player 1 is

IpEF R (y, s2)
dy

AESR(5) = (3~ 1) exp (” - ()2> -
s1 2(yv—1) 59
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By substituting p5?%(s), \E*SR(s), and g¥*SR(s) to (2.6), we can now easily verify that

PP (s) 4 NESR(s)
PR (s) + AFR(s) oK s)

=7. (2.14)

For the second case where s; > s9, the allocation is defined as

2
E2-SR vy—1 1 o <S2>
g $1,89) = —— 4+ —exp| ———— - [ 2=
U se) = p( 2(v=1) \si

and the derivative is
2 2
s5 ~ 59
= ———exp| —7——" () .
yms (V1) ( 2(v—1) \s1 )

The payment derivative is again equal to 1/s, and, hence,

) = -1 (1) e (2(77_ 0 <>2> -

By substituting p5?SR(s), AE*SR(s), and g¥*SR(s), we obtain

E2-SR

991" (y, 52)

Jy

S1 4 9l S2 2
PE2SR (5) | \E2SR () _, 1+(v-1) (5) €xp (2(71) ‘ (H) )
E2SR (g) 1 \E2SR(g) (E2-SR(g) A 2 .
OO L1y () exp<2(31) (2) >+(7—1) (2)

S <7

(2.15)

The inequality follows because the quantity at its left is decreasing in s; /s2 (its derivative with
respect to s;/s2 can be shown by tedious calculations to be non-positive for s;/s; > 1) and,

hence, it is upper-bounded by its value for s; /sy = 1; this is equal to ~ by its definition.

The theorem follows by Lemma 2.3 using (2.14) and (2.15). O

Interestingly, a simpler 2-player mechanism that uses the allocation function of SH and
the signal-ratio payment function of E2-SR has a slightly worse LPoA of ¢ = 1.618. In fact, this
bound is tight since this particular mechanism belongs to class C. The proof is left as an exercise

to the reader.
2.8 Some extensions

In this section, we will shortly discuss two possible extensions of our work. In particular, we
will discuss the possibility of achieving improved LPoA bounds (1) via mechanisms that have
access to the player budgets, and (2) by allowing the players to be more expressive and submit

signals that carry more information.
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281 Budget-aware mechanisms

All of our work so far in this chapter has focused on the scenario where the budget of each
player is private. Let us now discuss a bit the case of budget-aware mechanisms, which have

access to the budget value of each player.

It is easy to verify that our analysis for mechanisms Kelly, SH, E2-PYS, and E2-SR carries
over to this case. In contrast, our lower bound (Theorem 2.1) is not true anymore. The proof
constructs two games, in which almost every player has different budgets. The main property
that we exploited (for non-budget-aware mechanisms) is that the strategic behavior of the
players results in the same set of equilibria in both games. This argument fails for budget-
aware mechanisms; a small change in the budget of a single player could be enough to alter
the set of equilibria. So, in principle, one might hope even for full efficiency at equilibria (LPoA
equal to 1) in this case, analogously to the results of Maheswaran and Basar [2006], Johari and
Tsitsiklis [2009], and Yang and Hajek [2007] in the no-budget setting. Interestingly, our next

statement rules out this possibility.

Theorem 2.11. Forn > 2, every n-player budget-aware resource allocation mechanism has liquid price

of anarchy at least 4/3.

Proof. Let M be any n-player budget-aware resource allocation mechanism that uses an
allocation function g™ and a payment function p™. Let s = (s1, ..., s,) be an equilibrium of
the game GM induced by M for players with valuations v;(x) =  for i € {1,2} and v;(z) = 0
fori > 3, and budgets ¢; = 1 for every i € [n]. Assume that the allocation returned by M at this
equilibrium is d = (dy, ..., d,,). Without loss of generality, we may assume that one of the first

two players (say, player 1) gets a resource share of at most 1/2.

Recall that, for every signal vector y, the utility of any player i is defined as u}(y) =
vi(gM(y)) — pM(y). Now, consider the game G} where player 2 has the modified valuation
function @2(z) = 1 + x while all other players are as in Gi/; the budgets are the same in both
games and are known to the mechanism. Observe that the modified utility of player 2 is now
ad(y) = v2(g) (y)) — p) (y) = ud!(y) + 1. Hence, s is an equilibrium in G’ as well and M

returns the same allocation d again.

Clearly, due to the definition of the valuation functions, the contribution of players i > 3 in
the liquid welfare (in any state of the game) is zero. Hence, the liquid welfare at equilibrium

is min{9;(d1), c1} + min{oa2(da), c2} = di + 1 < 3/2, while the optimal liquid welfare is equal

34



to 2, achieved at the allocation according to which the whole resource is given to player 1. We

conclude that the liquid price of anarchy of M is LPoA(M) > LPoA(G}!) > 4/3,as desired. [

In spite of the lower bound in Theorem 2.11, whether budget-aware resource allocation

mechanisms can have an LPoA better than 2 — 1/n is an important open problem.
2.8.2 Higher expressiveness

Another extension of our setting could be to allow the players to declare their budget to the
mechanism in addition to their scalar signal. Taking this approach to its extreme, one could
imagine resource allocation mechanisms which ask the players to submit multi-dimensional
signals. At first glance, this seems to lead to much more powerful mechanisms than the ones
we have considered here. Surprisingly, this higher level of expressiveness has no consequences to
the LPoA at all and our lower bound of 2 — 1/n captures such mechanisms as well. Indeed,
by inspecting the two games used in the proof of Theorem 2.1, we can verify that the same
signal vector (no matter whether signals are single- or multi-dimensional) leads to the same
allocation by the mechanism and the same strategic behavior of the players in both games.

This observation applies to the proof of Theorem 2.11 as well.
2.9 Conclusion

In this chapter, we studied the efficiency of resource allocation mechanisms for users with
private concave valuation functions and budget constraints, who compete over the acquisition
of a single divisible resource. Using the liquid welfare as our efficiency benchmark, we showed
a completely different picture compared to the no-budget case, for which there exist fully
efficient mechanisms that align the global objective of maximizing the social welfare with the

strategic objectives of the players.

First, we proved a lower bound of 2 — 1/n on the liquid price of anarchy of any n-player
resource allocation mechanism, which indicates that there exist no fully efficient mechanisms
in the case where the players have budgets. Then, we characterized the worst-case games and
equilibria with respect to the liquid price of anarchy, and used this characterization to prove
tight bounds on the well-known Kelly and SH mechanisms (2 and 3, respectively). Further, we
exploited our characterization to design the improved mechanisms E2-PYS and E2-SR for the

case of two players that achieve an LPoA of approximately 1.79 and 1.53, respectively.
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Chapter 3

Bounding the inefficiency of
compromise in opinion formation

In this chapter, we study questions related to the existence, computational complexity, and
quality of equilibria in k-compromising opinion formation (k-COF) games; see the discussion
in Section 1.2 for a high-level introduction to the problem. These results have been published

in [Caragiannis et al., 2017a].
3.1 Overview of contribution and techniques

We begin by proving several properties about the geometric structure of opinions and beliefs
at pure Nash equilibria (states of the game where each player minimizes her individual cost

assuming that the remaining players will not change their opinions).

Using these structural properties we show that there exist simple £-COF games that do not
admit pure Nash equilibria. Furthermore, we prove that even in games where equilibria do
exist, their quality may be suboptimal in terms of the social cost (the total cost experienced by
all players), by showing that the price of stability grows linearly with k. For the special case
of 1-COF games, we show that each such game admits a representation as a directed acyclic
graph, in which every pure Nash equilibrium corresponds to a path between two designated
nodes. Hence, the problems of computing the best or worst (in terms of the social cost) pure
Nash equilibrium (or even of computing whether such an equilibrium exists) are equivalent to

simple path computations that can be performed in polynomial time.

For general k-COF games, we quantify the inefficiency of the worst-case pure equilibria
by bounding the price of anarchy. Specifically, we present upper and lower bounds on the

price of anarchy of k-COF games (with respect to both pure and mixed Nash equilibria) that
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PoA MPoA PoS Existence/Complexity

1 3 (Thms 3.19, 3.20) > 6 > 17/15  PNE may not exist for any k
(Thm. 3.21) (Thm.3.8) (Thm. 3.6)

2 < 12 (Thm. 3.12) >24/5 >8/7 Best and worst PNE is in P
> 18/5 (Thm. 3.22) (Thm. 3.23) (Thm.3.9) (Thm.3.10)

>3 <4(k+1) (Thm.3.12) >k+2 >kl Open question: Is computing a
> k+1(Thm.3.22) (Thm.3.23) (Thm.3.7) PNEinP whenk > 2?

Table 3.1: Summary of our results for k-COF games. The table presents our bounds on the price
of anarchy over pure Nash equilibria (PoA) and mixed Nash equilibria (MPoA), on the price of
stability (PoS) as well as the existence and complexity of pure Nash equilibria (PNE). Clearly,
any upper bound on the price of anarchy is also an upper bound on the price of stability. See

[Caragiannis et al., 2017a].

suggest a linear dependence on k. Our upper bound on the price of anarchy exploits, in a non-
trivial way, linear programming duality in order to lower-bound the optimal social cost. For
the fundamental case of 1-COF games, we obtain a tight bound of 3 using a particular charging

scheme in the analysis. Our contribution is summarized in Table 3.1.
3.1.1 Chapter roadmap

In the following, we begin with a discussion of the bibliography that is related to opinion
formation and to our work in particular. Then, in Section 3.2, we continue with preliminary
definitions, notation and examples in Section 3.3. In Section 3.4 we present several structural
properties of pure Nash equilibria, while Section 3.5 is devoted to the existence and the price of
stability of these equilibria. Then, in Section 3.6 we present a polynomial-time algorithm that
determines whether pure Nash equilibria exist in 1-COF games, and, in addition, computes
the best and worst such equilibria, when they do exist. In Sections 3.7 and 3.8 we prove
upper bounds on the price of anarchy for general k-COF and 1-COF games, respectively, while
Section 3.9 contains our lower bounds on the price of anarchy. We conclude with a synopsis of

our results in Section 3.10.
3.2 Related work

DeGroot [1974] proposed a framework that models the opinion formation process, where each
individual updates her opinion according to a weighted averaging procedure. Subsequently,

Friedkin and Johnsen [1990] refined the model by assuming that each individual has a private
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belief and expresses a (possibly different) public opinion that depends on her belief and the
opinions of the people in her social circle. More recently, Bindel et al. [2015] studied this model
and proved that, for the setting where beliefs and opinions are real numbers in the interval
[0, 1], the repeated averaging process leads to an opinion vector that can be thought of as the

unique equilibrium in a corresponding opinion formation game.

Deviating from the assumption that opinions depend on the whole social circle, Bhawalkar
et al. [2013] considered co-evolutionary opinion formation games, where as opinions evolve so
does the neighborhood of each person. This model is conceptually similar to previous ones that
have been studied by Hegselmann and Krause [2002], and Holme and Newman [2006]. Both
Bindel et al. [2015] and Bhawalkar et al. [2013] proved constant bounds on the price of anarchy
of the games that they study. In contrast, the modified cost function we used in this chapter in
order to model compromise yields considerably higher price of anarchy, that depends linearly

on the size of the neighborhood.

A series of recent papers in the EconCS community considered discrete opinion formation
models with binary opinions. Chierichetti et al. [2018] considered discrete preference games,
where beliefs and opinions are binary and study questions related to the price of stability. For
these games, Auletta et al. [2015, 2017a] characterized the social networks where the belief of
the minority can emerge as the opinion of the majority, while Auletta et al. [2017b] examined
the robustness of such results to variants of the model. Auletta et al. [2016] generalized the
class of discrete preference games so that the players are not only interested in agreeing with
their neighbors, but more complex constraints can be used to represent the preferences of the
players. Bilo et al. [2016] extended the class of co-evolutionary formation games to the discrete
setting. Other models assume that opinion updates do not depend on the entire social circle
of each individual; instead, each person consults only a small random subset of her social
acquaintances; see the recent paper by Fotakis et al. [2016] as well as the survey of Mossel

and Tamuz [2014].

In scenarios where there are more than one issues to be discussed, Jia et al. [2015] proposed
and analyzed the DeGroot-Friedkin model for the evolution of an influence network between
individuals who form opinions on a sequence of issues, while Xu et al. [2015] introduced a
modification according to which each individual may recalculate the weight assigned to her

opinion (her self-confidence), after the discussion of each issue with her social circle.

Another line of research has focused on how fast a system converges to a stable state. In this
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spirit, Etesami and Basar [2015] considered the dynamics of the co-evolutionary Hegselmann-
Krause model [2002] and focused on the termination time in finite dimensions under different
settings. Similarly, Ferraioli et al. [2016] studied the convergence of decentralized dynamics in
finite opinion games, where players have only a finite number of opinions available. Ferraioli
and Ventre [2017] considered the role of social pressure towards consensus in opinion games
and provide tight bounds on the speed of convergence for the important special case where the

social network is a clique.

Das et al. [2014] performed a set of online user studies and argued that widely studied
theoretical models do not completely explain the experimental results obtained. Hence, they
introduced an analytical model for opinion formation and presented preliminary theoretical
and simulation results on the convergence and structure of opinions when users iteratively

update their respective opinions according to the new model.

Chazelle [2012] analyzed influence systems, where each individual observes the location
of her neighbors and moves accordingly, and presented an algorithmic calculus for studying
such systems. Kempe et al. [2016] presented a novel model of cultural dynamics and focused on
the interplay between selection and influence. Among other results, they presented an almost
complete characterization of stable outcomes and showed that convergence is guaranteed from
all starting states. Gomez-Rodriguez et al. [2012] considered network diffusion and contagion
propagation. Their goal was to infer an unknown network over which contagion propagated,
tracing paths of diffusion and influence. Finally, Kempe et al. [2015] studied the optimization
problem for influence maximization in a social networks, where each individual may decide to
adopt an idea or an innovation depending on how many of her neighbors already do. The goal

is to select an initial seed set of early adopters so that the number of adopters is maximized.
3.3 Definitions and notation

A compromising opinion formation game defined by the k£ nearest neighbors (henceforth,
called k-COF game) is played by a set of n players whose beliefs lie on the line of real numbers.
Lets = (s1,52,...,5,) € R" be the vector containing the players” beliefs such that s; < s;,1
for each i € [n — 1]. Let z = (21, 22,..., 2,) € R" be a vector containing the (deterministic or
randomized) opinions expressed by the players; these opinions define a state of the game. We
denote by z_; the opinion vector obtained by removing z; from z. In an attempt to simplify

notation, we omit k from all relevant definitions.
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Given vector z (or a realization of it in case z contains randomized opinions), we define
the neighborhood N;(z,s) of player i to be the set of k players whose opinions are the closest
to the belief of player i breaking ties arbitrarily (but consistently). For each player i, we define
I;(z, s) as the shortest interval of the real line that includes the following points: the belief s;, the
opinion z;, and the opinion z; for each player j € N;(z,s). Furthermore, let ¢;(z, s) and r;(z, s) be
the players with the leftmost and rightmost point in /;(z, s), respectively. For example, ¢;(z, s)
can be equal to either player i or some player j € N;(z,s), depending on whether the leftmost
point of I;(z,s) is s;, z;, or z;. To further simplify notation, we will frequently use ¢(i) and r (%)
instead of /;(z,s) and r;(z,s) when z and s are clear from the context. In the following, we
present the relevant definitions for the case of possibly randomized opinion vectors; clearly,

these can be simplified whenever z consists entirely of deterministic opinions.

Given a k-COF game with belief vector s, the cost that player 7 experiences at the state of

the game defined by an opinion vector z is

jENi(sz)

E[cost;(z,s)] = E [ max {|zZ — sil, |z — z,]}]
— & [max |2 = sl — ik o~ 200} 61)

For the special case of 1-COF games, we denote by 0;(z,s) (or (i) when z and s are clear from
the context) the player (other than 7) whose opinion is closest to the belief s; of player ¢; notice

that o(7) is the only member of N;(z,s). In this case, the cost of player i can be simplified as
E[cost;(z,s)] = E [max { |z = 5il, |20, (2,8) — ZZ|H . (3.2)

We say that an opinion vector z consisting entirely of deterministic opinions is a pure Nash
equilibrium if no player ¢ has an incentive to unilaterally deviate to a deterministic opinion z/ in

order to decrease her cost, i.e.,
cost;(z,s) < cost;((2],z_;),s),

where by (z,z_;) we denote the opinion vector in which player i chooses the opinion z, and
all other players choose the opinions they have according to vector z. Similarly, a possibly
randomized opinion vector z is a mixed Nash equilibrium if for any player ¢ and any deviating

deterministic opinion z; we have

Elcost;(z,s)] < E,_,[cost;((z},z_;),s)].
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Let PNE(s) and MNE(s) denote the sets of pure and mixed Nash equilibria, respectively, of the
k-COF game with belief vector s.

The social cost of an opinion vector z is the total cost experienced by all players, i.e.,
E[SC(z,s)] = )  E[cost;(z,s)].
i=1

Let z*(s) be a deterministic opinion vector that minimizes the social cost for the given k-COF

game with belief vector s; we will refer to it as an optimal opinion vector for s.

The price of anarchy (PoA) over pure Nash equilibria of a particular k-COF game with belief
vector s is defined as the ratio between the social cost of its worst (in terms of the social cost)
pure Nash equilibrium and the optimal social cost, i.e.,

SC(z,s)
PoA(s) = zef;llillg(s) SC(z*(s),s)
The price of stability (PoS) over pure Nash equilibria of the k-COF game with belief vector s is
defined as the ratio between the social cost of the best pure Nash equilibrium (in terms of social
cost) and the optimal social cost, i.e.,

. SC(z,s)
PoS(s) = It 5Cz(s).9)"

Similarly, the price of anarchy and the price of stability over mixed Nash equilibria of a
k-COF game with belief vector s are defined as

- E[SC(z, s)]
MPOA(S) = Sup 8C(z(s).5)

and

.. E[5C(z,s)]
MPoS(s) = inf . 5C(z(s).5)

respectively.
Then, the price of anarchy and the price of stability of k-COF games, for a fixed k, are defined

as the supremum of PoA(s) and PoS(s) over all belief vectors s, respectively.

Example 3.1. Consider the 1-COF game with three players and belief vector s = (—10,2,5)
which is depicted in Figure 3.1(a). For simplicity, we will refer to the players as left (), middle
(m), and right (r).

Let us examine the opinion vector z = (—10, —5, 4) which is depicted in Figure 3.1(b). We

have that o(¢) = m since the opinion z,, = —5 of the middle player is closer to the belief
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s¢ = —10 of the left player than the opinion z, = 4 of the right player. Therefore, the cost of
the left player is costy(z,s) = max{| — 10 + 10|,| — 10 + 5|} = 5. Similarly, the neighbors of
the middle and right players are o(m) = r and o(r) = m, while their costs are cost,,(z,s) =
max{2 + 5,4 + 5} = 9 and cost,(z,s) = max{5 — 4,4 + 5} = 9, respectively. The social cost is
SC(z,s) = 23.

Now, consider the alternative pure Nash equilibrium opinion vector z’ = (—3.5, 3,4) which
is depicted in Figure 3.1(c). Observe that even though z’ # z, each player has the same neighbor
as in z and no player has an incentive to deviate in order to decrease her cost. Indeed, let us
focus on the middle player for whom itis o(m) = r. Her opinion is in the middle of the interval
defined by her belief s,,, = 3 and the opinion z,. = 5 of the right player. Hence, this opinion
minimizes her cost by minimizing the maximum between the distance from her belief and the
distance from the opinion of the right player. It is easy to verify that the same holds for the left
and right players. The player costs are now 6.5, 1, and 1, respectively, yielding a social cost of

8.5. O

3.4 Some properties about equilibria

We devote this section to proving several some interesting properties of pure Nash equilibria;
these will be useful in the following. The first one is obvious due to the definition of the cost

function.

Lemma 3.1. In any pure Nash equilibrium z of a k-COF game with belief vector s, the opinion of any
player i lies in the middle of the interval I;(z,s).

The next lemma allows us to argue about the order of player opinions in any pure Nash

equilibrium z.

Lemma 3.2. In any pure Nash equilibrium z of a k-COF game with belief vector s, it holds that z; < z;j11

forany i € [n — 1] such that s; < s;41.

Proof. For the sake of contradiction, let us assume that z; 1 < z; for a pair of players ¢ and 7 41
with s; < s;41. Then, it cannot be the case that the leftmost endpoint of the interval I;(z,s) of
player i is at the left of (or coincides with) the leftmost endpoint of interval I;1(z, s) of player i+
1 and the rightmost endpoint of /;(z, s) is at the left of (or coincides with) the rightmost endpoint

of I;+1(z,s). In other words, it cannot be the case that min{s;, Zg(i)} < min{s;1, zz(iﬂ)} and
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Figure 3.1: The game examined in Example 3.1. (a) Illustration of the belief vector s =
(—10,2,5). The black squares correspond to player beliefs, while the notation [z] is used to
denote the number of players that have the same beliefs; here we have only one player per
belief. (b) Illustration of the opinion vector z = (—10,—5,4). The dots correspond to player
opinions and each arrow connects the belief of a player to her opinion. (c) Illustration of the

equilibrium opinion vector z’ = (—3.5, 3,4).

max{s;, zr(i)} < max{s;t1, Zr(i—i—l)} hold simultaneously. Since, by Lemma 3.1, points z; and
zi+1 lie in the middle of the corresponding intervals, we would have z; < z;;1, contradicting

our assumption.

So, at least one of the two inequalities between the interval endpoints above must not
hold. In the following, we assume that min{s;, zy;)} > min{s;y1, 2y41)} (the case where
max{s;, 2.(;)} > Max{sit1,2(i+1)} is symmetric). This assumption implies that zy; ;) < s; <
siv1 (e, min{s; 11, 2pi41)} = 2¢(+1)), and, subsequently, that zy; 1) < z(;). In words, player
(i + 1) does not belong to interval I;(z,s). Furthermore, since z;;41) < si+1, and as (by
Lemma 3.1) z;4; lies in the middle of I;1(z,s), we also have that the leftmost endpoint of
interval I;1(z, s) cannot belong to player i + 1, i.e., £(i + 1) # i + 1. An example of the relative
ordering of points (beliefs and opinions), after assuming that z; 11 < 2z; and min{s;, zy;)} >

min{s;1, zy+1)} is depicted in Figure 3.2.

Since /(i + 1) does not belong to I;(z, s), there are at least k players different than ¢(i + 1)

and ¢ that have opinions at distance at most s; — 2p(i41) from belief s;. Since s; < s;11 and
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20(i41) 2(i) Si Zit1 Zi Sit+1
Figure 3.2: An example of the argument used in the proof of Lemma 3.2.

Zg(i+1) < Zg(), all these players are also at distance strictly less than s; 1 — z(;41) from belief
si+1. This contradicts the fact that the opinion of player ¢(i 4 1) is among the k closest opinions

to Si41- L]

In the following, in any pure Nash equibrium z, we assume that z; < z; ;1 forany i € [n—1].
This follows by Lemma 3.2 when s; < s;41 and by a convention for the identities of players with

identical belief.

In addition to the ordering of opinions in a pure Nash equilibrium, we can also specify the

range of neighborhoods (in Lemma 3.3) and opinions (in Lemma 3.4).

Lemma 3.3. Let z be a pure Nash equilibrium of a k-COF game with belief vector s. Then, for each
player i, there exists j with i — k < j < i such that I;(z,s) is the shortest interval that contains the

OpINions zj, Zj41, ..., Zj4+k and belief s;.

Proof. 1If I;(z,s) consists of a single point, the lemma follows trivially by the definition of the
neighborhood and Lemma 3.2 since at least k + 1 consecutive players including i should have
opinions in I;(z,s). Otherwise, by Lemma 3.2, the statement is true if there is at most one
opinion in each of the left and the right boundary of I;(z, s); in this case, there are exactly k + 1

consecutive players including player i with opinions in I;(z, s).

In the following, we will handle the subtleties that may arise due to tie-breaking on the
boundaries of I;(z,s). Let Y, and Y, be the set of players with opinions at the leftmost and the
rightmost point of /;(z, s), respectively. From Lemma 3.1, player i belongs neither to Y; nor to
Y,. Now consider the following set of players: the |Y; N N;(z,s)| players with highest indices
from Yy, the |Y, N N;(z,s)| players with lowest indices from Y, and all players with opinions
that lie strictly in ;(z,s). Due to the definition of N;(z,s) and by Lemma 3.2, there are k + 1

players in this set, including player 4, with consecutive indices. O
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Figure 3.3: An example of the argument used in the proof of Lemma 3.4.

In the following, irrespectively of how ties are actually resolved, we assume that N;(z,s) U {i}
consists of k + 1 players with consecutive indices. This does not affect the cost of player ¢ at
equilibrium in the proofs of our upper bounds (since, by Lemma 3.3, the interval defined is
exactly the same), while our lower bound constructions are defined carefully so that the results

hold no matter how ties are actually resolved.

Lemma 3.4. Let z be a pure Nash equilibrium of a k-COF game with belief vector s. Then, for each

player i, it holds that sy;) < z; < sp.(y).-

Proof. Since N;(z,s)U{i} consists of k+ 1 players with consecutive indices, we have that s,(;) <
s; < 5,(;). For the sake of contradiction, let us assume that s;;) < s,(;) < 2; for some player i
(the case where z; lies at the left of s(;) is symmetric). Since s,.(;) < s; and as z; is at the middle of
I;(z,s), it holds that 2, ;) > z; (i.e., r(i) # 7). Also, since z,(;y > z; > s,(;), and because z,;) is in
the middle of 7, ;)(z, s), it holds that z,(,(;)) > 2,(;) and, by Lemma 3.2, r(r(i)) > r(i); see Figure
3.3 for an example of the relative ordering of points (beliefs and opinions) when assuming that
Sp(i) < Zi-

We now claim that £(i) ¢ N,(;(z,s). Assume otherwise that £(i) € N,;(z,s). By definition,
7(r(i)) € Ny;)(2z,s). Then, Lemma 3.2 implies that any player j, different than r(i), with £(i) <
J <r(r(i))isalsoin N, (z,s). Hence, N, ;(z,s) contains at least the k — 1 players in N;(z,s) \
{r(i)}, as well as players i and r(r(i)). This, however, contradicts the fact that |V, ;) (z,s)| = k.

Therefore, player /(i) is not among the k nearest neighbors of 7(i).

So, we obtain that
Ze(r(i)) = Sr(s) > Zr(i) — Sr(i) > Zr(s) — % = zi — Min{s, ;) }
> Sp(i) — min{si, Zg(i)} > Sr(i) — 2e(3)-

If Ze@) > Sr(s) (i.e, 24(3) is at the right of Sr(i))/ then since, by Lemma 3.2, 2oy < Ze(r(i)) and

r(r(i)) € Ny)(z,s), we obtain that /(i) € N,(;(z,s) as well; a contradiction. Otherwise, the
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above inequality yields that z,.(,(;)) — $,(s) > Sr(s) — 2¢(;) = 0 (i-e., the distance of s,.(;) from z,(,(;)
is strictly higher than the distance of s,.(; from z;)), and, again, we obtain a contradiction to

the fact that £(i) ¢ N,(;)(z,s) and r(r(i)) € N,(;(z,s). O
3.5 Existence and quality of equilibria

Our first technical contribution is a negative statement: pure Nash equilibria may not exist for
any k (Theorem 3.6). Then, we show that even in games that admit pure Nash equilibria, the
best equilibrium may be inefficient; in other words, the price of stability is strictly greater than
1 for any value of k, and, actually, depends linearly on k. These results appear in Theorems 3.7,

3.8, and 3.9.
3.5.1 Existence of equilibria

We begin with a technical lemma. The lemma essentially presents necessary conditions so that
a particular set of neighborhoods, and corresponding intervals, may coexist in a pure Nash

equilibrium.

Lemma 3.5. Consider a k-COF game and any three players a,b,c with beliefs s, < s, < s,
respectively. For any pure Nash equilibrium z where 1,(z,s) = [Sq,2p), Ip(z,8) = [sp, 2] and
I.(z,8) = [z, Sc), it must hold that s, > %, while for any pure Nash equilibrium z where

14(,8) = [34, 28], In(2,8) = [2q, s3] and Ic(z,8) = [z, S¢], it must hold that s, < 5Saf3se,

Proof. It suffices to prove the first case; the second case is symmetric. Since I(z,s) = [sp, 2]
and I.(z,s) = [, S¢|, by Lemma 3.1 it holds that z;, = (s + 2.)/2 and z. = (2 + s.)/2 which

yield that z, = s, + *3* and z. = s, + @ Hence, we obtain that

2(50 - Sb)
— 5

Sa+2zp _ 3Sa+2sp+sec
2 - 6

Ze — Sp =

(3.3)

Similarly, since I,(z,s) = [sq, 2, it holds that z, = and, therefore, we obtain

that

—38q + 48y — Se
5 .

Sp— 2g =

(3.4)

Since I;(z,s) = [sp, 2], we have that a ¢ Ny(z,s) and, subsequently, that z. — s, < s, — 2z, which,

together with (3.3) and (3.4), yields that s, > % as desired. O

The proof of the next theorem is inspired by a construction of Bhawalkar et al. [2013] and

exploits Lemma 3.5.
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Theorem 3.6. For any k, there exists a k-COF game with no pure Nash equilibria.

Proof. Consider a k-COF game with 2k + 1 players partitioned into three sets called L, M, and
R, where L and R each contain k players, while M = {m} is a singleton. We set s; = 0 for each
i € L, s; = 2foreachi € R, while s,,, =1 — ¢, where ¢ < 1/4 is an arbitrarily small positive

constant.

Let us assume that there exists a pure Nash equilibrium z. Then, clearly, for any i € L it
must hold that N;(z,s) = L\ {i}U{m}, and, therefore, I;(z,s) = [0, z,]. Similarly, forany i € R
we have N;(z,s) = R\ {i} U {m}, and I;(z,s) = [z, 2]. Now, concerning player m, if all her
neighbors are in L, then, it holds that I,,,(z,s) = [z, s,] for some i € L. But then, observe that
even though the intervals defined above exhibit the structure described in Lemma 3.5, the belief
vector s does not satisfy the corresponding necessary conditions of that lemma as 1 — ¢ > 3/4;
hence, z is not a pure Nash equilibrium. The same reasoning applies in case all of m’s neighbors

are in R.

It remains to consider the case where m has at least one neighbor in each of L and R. By the
definition of /;(z,s) for i € L U R, as stated above, Lemma 3.1 implies that z; = z,,/2 for any
i € L, while z; = 1 + 2, /2 for any i € R. Then, Lemma 3.4 implies that z,,/2 < s, =1 — e and
1+ 2 /2 > sm, and, consequently, I,,(z,s) = [z, /2,1 + z,/2]. Again, by Lemma 3.1 we have
that z,, = WQ”LQM, i.e, z, = 1. But then, we obtain z; = 1/2 forany i € L and z; = 3/2 for
any ¢ € R, which implies that all £ players in L are strictly closer to s,, than any player in R;

this contradicts the assumption that m has neighbors in both L and R. O

An example of the construction used in the proof of Theorem 6 is presented in Figure 3.4.
3.5.2 Price of stability

We will now prove that the price of stability of k-COF games is strictly higher than 1, i.e., there
exist games without any efficient pure Nash equilibria (even when they exist). In particular,

for any value of & we show that there exist rather simple games with price of stability in Q(k).

Theorem 3.7. The price of stability of k-COF games, for k > 3, is at least (k + 1) /3.

Proof. Consider a k-COF game with k£ + 1 players, where k£ of them have belief 0, while the
remaining one has belief 1. Let zZ be the opinion vector where each player has opinion 0. Clearly,

SC(z,s) = 1, and, hence the optimal social cost is at most 1.
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Figure 3.4: (a) The k-COF game considered in the proof of Theorem 3.6 where the & players of
set L have belief 0, player m has s,,, = 1 — € and the k players of set R have belief 2. (b) Lemma
3.5 implies that there is no pure Nash equilibrium where m has neighbors in strictly one of L,
R. In the remaining case, it must hold that = = 1, but then all players in L are strictly closer to

sm than any player in R.

Now, consider any pure Nash equilibrium z. Since, there are exactly k + 1 players, the
neighborhood of each player includes all remaining ones. Let x be the opinion that the player
with belief 1 expresses at z. By Lemma 3.4, we have that z € [0,1], and by Lemma 3.1, we
have that all remaining players must have opinion x /2. Therefore, again by Lemma 3.1, x must
satisfy the equation = (1 + z/2)/2, i.e., z = 2/3. Therefore, there exists a single pure Nash
equilibrium z where all players with belief 0 have opinion 1/3 and the single player with belief
1 has opinion 2/3, and we obtain SC(z) = (k + 1)/3 which implies the theorem. O

Clearly, the above result states the inefficiency of the best pure Nash equilibrium only when
k > 3. For the remaining cases, where k € {1,2}, we will present slightly more complicated
instances, where the proofs rely on Lemma 3.5. Recall that, for 1-COF games, o (i) denotes the

single neighbor of player .

Theorem 3.8. The price of stability of 1-COF games is at least 17/15.
Proof. We use the following 1-COF game with six players and belief vector
s = (0,5 —3),8,15,18 + 3\, 23),

where A € (0,1/4).

Consider the opinion vector
Z=(3—X6—2)\7—6)16+6)17+2X 20+ \).
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It can be easily seen that it has social cost SC(z,s) = 10 + 12\. So, clearly, SC(z*,s) < 10 + 12\

for any optimal opinion vector z*.

Now, consider the opinion vector

- 5—3X 10 — 6 31 38 59 4+ 6\ 64 4+ 3\
N 3 7 3 3’3 3 ' 3
with social cost SC(z, s) = 34/3—4\. Itis not hard to verify (by showing, as Lemma 3.1 requires,
that each opinion lies in the middle of its player’s interval) that z is a pure Nash equilibrium;

we argue that this equilibrium is unique.

We claim that, by Lemma 3.5, there cannot be a pure Nash equilibrium where both o(j —
1) =jand o(j + 1) = j forany j € {2,5}. To see this, assume otherwise and note that the

corresponding intervals satisfy the conditions of the lemma. However, by observing the belief

58j,1+38]'+1 38]',1+5S]'+1
8 8

vector s, it holds that <55 < , for j € {2,5}, i.e., s does not satisfy the

conditions of Lemma 3.5; this contradicts our original assumption.

The above observation, together with Lemma 3.2, implies that o(1) = 2, 0(3) =4, 0(4) =3
and o(6) = 5 in any equilibrium. This leaves only o(2) € {1,3} and o(5) € {4, 6} undefined.
Consider an equilibrium z’ with ¢(2) = 3; the case o(5) = 4 is symmetric. Since o(3) = 4,

Lemma 3.4 implies that 25 > s3 = 8 and, hence

25 — 89 > 34 3. (3.5)

Since 0(1) = 2, 0(2) = 3and 2} = 5“52/2, Lemma 3.4 implies that 25, > s, and we obtain that

2] > % and, hence,

5—3A

/
So — 271 <
2 1 9

(3.6)

By inequalities (3.5) and (3.6), we get z5 — s3 > s2 — 2], which contradicts our assumption that
0(2) = 3. So, it must hold that ¢(2) = 1 (and, respectively, o(5) = 6) which implies that z is the

unique pure Nash equilibrium.
We conclude that the price of stability is lower-bounded by

SC(z,s)  34/3 —4A
SC(z*,s) 10+ 12\

and the theorem follows by taking A to be arbitrarily close to 0. O

Theorem 3.9. The price of stability of 2-COF games is at least 8 /7.
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Proof. Consider a 2-COF game with four players q, b, ¢, and d, with belief vector s = (0,1, 1, 2).
Letz = (1,1, 1,3/2) be an opinion vector and observe that SC(Z,s) = 3/2; note that z is not a
pure Nash equilibrium as player a has an incentive to deviate. Clearly, the optimal social cost

is at most 3/2.

Now consider any pure Nash equilibrium z. By the structural properties of equilibria,
No(z,8) = Ng(z,s) = {b,c}, while b € N.(z,s) and ¢ € Ny(z,s). It remains to argue about
the second neighbor of b and c. We distinguish between two cases depending on whether b and

¢ have a common second neighbor in {«a, d} or not.

First, let a be the common neighbor; the case where d is that neighbor is symmetric. By
Lemma 3.1, we have that z, = z. = (1 + z,)/2. Then, we have that ,(z,s) = [0, ), I(z,s) =
[24, 1], and I4(z,s) = [2, 2]. Note that by applying Lemma 3.5 on players q, b, and d, we obtain

a contradiction to the fact that z is a pure Nash equilibrium.

Second, without of loss of generality, let Ny(z,s) = {a,c} and N.(z,s) = {b,d} which, by
Lemma 3.4, imply that z, € [0,1] and 2. € [1,2]. Then, Lemma 3.1 yields z, = 2./2, 2z, =
(za + 2¢)/2, ze = (2p + 2z4) /2, and zq = 1 + 2, /2. By solving this system of equations, we obtain
thatz = (4/7,6/7,8/7,10/7) and, hence, SC(z) = 12/7. O

3.6 Complexity of equilibria

In this section we focus entirely on 1-COF games. We present a polynomial-time algorithm that
determines whether such a game admits pure Nash equilibria, and, in case it does, allows us
to compute the best and worst pure Nash equilibrium with respect to the social cost. We do
so by establishing a correspondence between pure Nash equilibria and source-sink paths in a
suitably defined directed acyclic graph. See Example 3.2 below for an instance execution of the

following procedure.

Assume that we are given neighborhood information according to which each player 7 has
either player i — 1 or player i + 1 as neighbor. From Lemma 3.3, such a neighborhood structure
is necessary in a pure Nash equilibrium. We claim that this information is enough in order to
decide whether there is a consistent opinion vector that is a pure Nash equilibrium or not. All
we have to do is to use Lemma 3.1 and obtain n equations that relate the opinion of each player
to her belief and her neighbor’s opinion. These equations have a unique solution which can
then be verified whether it indeed satisfies the neighborhood conditions or not. So, the main

idea of our algorithm is to cleverly search among all possible neighborhood structures that are
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not excluded by Lemma 3.3 for one that defines a pure Nash equilibrium.

For integers 1 < a < b < ¢ < n, let us define the segment C(a,b,c) to be the set
of players {a,a + 1,...,c} together with the following neighborhood information for them:
olp) =p+1lforp = a,..,band o(p) = p—1forp = b+ 1,...,c. It can be easily seen
that the neighborhood information for all players at a pure Nash equilibrium can always
be decomposed into disjoint segments. Importantly, given the neighborhood information in
segment C'(a, b, ¢) and the beliefs of its players, the opinions they could have in any pure Nash
equilibrium that contains this segment are uniquely defined using Lemma 3.1. In particular,
the opinions of the players within a segment C(a, b, ¢) are computed as follows. First, we set
2 = sp + % and 2y = 31,—|—M.Then,wesetzp = Sﬁ%if@ < p < b, and

_ Sptzp—1
Zp = 2

ifb<p<e.

We remark that the opinion vector implied by a segment is not necessarily consistent to
the given neighborhood structure. So, we call segment C(a, b, c) legit if a # 2, ¢ # n — 1 (so
that it can be part of a decomposition) and the uniquely defined opinions are consistent to the

neighborhood information of the segment, i.e., if |2,(,) — sp| < |2,y — 5| for any pair of players

p,p’ (with p # p’) in C(a, b, ¢). This process appears in Algorithm 1.

A decomposition of neighborhood information for all players will consist of consecutive
segments C(ay,b1,c1), C(az, ba, c2), ..., Cag, by, ¢) sothata; = 1, ¢, = n, ay = ¢o—1 + 1 for
¢ = 2,...,t. Such a decomposition will yield a pure Nash equilibrium if it consists of legit
segments and, furthermore, the uniquely defined opinions of players in consecutive segments

are consistent to the neighborhood information.

In particular, consider the directed graph G that has two special nodes designated as the
source and the sink, and a node for each legit segment C/(a, b, c). Note that G has O(n?) nodes.
The source node is connected to all segment nodes C(1, b, ¢) while all segment nodes C(a, b, n)
are connected to the sink. An edge from segment node C(a, b, ¢) to segment node C(a’,V, )
exists if ' = ¢ + 1 and the uniquely defined opinions of players in the two segments are

consistent to the neighborhood information in both of them. This consistency test has to check

1. whether the leftmost opinion z, in segment C(a’, ¥, ') is indeed further away from the
belief s. of player c than the opinion z._; of the designated neighbor of c in segment
C(a,b,c),ie., |ze—1 — Sc| < |za — Sc|, and

2. whether the rightmost opinion z. in segment C(a, b, ¢) is further away from the belief s,/
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of player o’ than the opinion z,; of the designated neighbor of ¢’ in segment C'(d/, ¥/, ¢/),

ie, |zar1 — Sar| < |2ze — Sl

By the definition of segments and of its edges, G is acyclic. This process appears in Algorithm 2.

Based on the discussion above, there is a bijection between pure Nash equilibria and source-
sink paths in G. In addition, we can assign a weight to each node of GG that is equal to the total
cost of the players in the corresponding segment, i.e.,

weight(Cl(a,b,¢)) = > |z, — s,].
asp<c
Then, the total weight of a source-sink path P is equal to the social cost of the corresponding
pure Nash equilibrium, i.e,

SC(z,s) = Z weight(C(a, b, c)).
C(a,b,c)eP

Hence, standard algorithms for computing shortest or longest paths in directed acyclic

graphs can be used not only to detect whether a pure Nash equilibrium exists, but also to

compute the equilibrium of best or worst social cost.

Theorem 3.10. Given a 1-COF game, deciding whether a pure Nash equilibrium exists can be done in
polynomial time. Furthermore, computing a pure Nash equilibrium of highest or lowest social cost can

be done in polynomial time as well.

Example 3.2. Consider a 1-COF game with four players with belief vector s = (0,9, 12,21).
According to the discussion above, there are 10 segments of the form C(a,b,c) with 1 < a <
b < ¢ < 4, but it can be shown that only 3 of them are legit; these are C(1,1,2), C(3,3,4)
(see Figure 3.5a), and C(1,2,4) (see Figure 3.5b). For example, segment C(1,1,4), in which
o(l) =2,0(2) =1,0(3) = 2,and o(4) = 3, corresponds to the opinion vector (3,6,9,15).
This is not consistent to the neighborhood information ¢(2) = 1 in the segment, as the belief of
player 2 coincides with the opinion of player 3, while the opinion of player 1 is further away.
The resulting directed acyclic graph G (see Figure 3.5c) implies that there exist two pure Nash
equilibria for this 1-COF game, namely the opinion vectors (3,6, 15, 18) and (5, 10,11,16). O

3.7 Upper bounds on the price of anarchy

In this section we prove upper bounds on the price of anarchy of general k-COF games. In our

proof, we relate the social cost of any deterministic opinion vector, including optimal ones, to a
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Algorithm 1: Segment

Input: belief vector s = (s, ..., s,), parameters a, b, and ¢ such thata < b < ¢
Output: opinion vector z,.. = (zq, ..., 2¢), segment weight, legit indicator
legit < 0
if a # 2 or c # n — 1 then
legit + 1
2 < sp+ 3(sp41 — sp)
Zp1 < Sp+ 2(Sp41 — Sb)
for p:= b — 1 downto a do
|2 5(sp + 2pt1)
end
forp:=b+2tocdo
| zp = 5(sp + 2p-1)
end
forp:=a+1tobdo
if [2,—1 — sp| < |2p+1 — sp| then
| legit <0
end
end
forp:=b+1toc—1do
if |2p41 — sp| < |2p—1 — sp| then

| legit«+ 0
end
end
weight := 0

forp:=atocdo
| weight < weight + |z, — s,
end
end
return [z,.., weight, legit]
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Algorithm 2: ConstructGraph

Input: belief vector s = (s1, ..., sp)
Output: a node-weighted directed acyclic graph G
V0
fora <~ 1ton—1do
forb < aton —1do
forc< b+ 1tondo

[z4:.c, weight, legit] < Segment(s, a, b, c)

if legit = 1 then

C.a<a, Cb<b Cc<c Czge ¢ Zq:, C.weight < weight

V—VucC
end

end
end
end
V « V U {source, sink}
E+ 0
forC € V do
if C.a = 1 then

| E <+ E U (source,C)
else if C.c = n then

| E <« EU(C,sink)
end

end

for all segment pairs (C, D) such that D.a = C.c + 1 do

if |C.ze—1 — 8¢l < |D.zg — sc.el and |D.zq41 — sp.a| < |C.zc — $Sp.o| then
| E+~ FU(C,D)

end

end
return G = (V, E)
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Figure 3.5: The 1-COF game considered in Example 3.2. (a) The legit segments C'(1,1,2) and
C(3,3,4) which imply the opinion vector (3, 6,15, 18). (b) The legit segment C(1, 2,4) which
implies the opinion vector (5, 10,11, 16). (c) The directed acyclic graph G which shows that

there exist two pure Nash equilibria in the game.

quantity that depends only on the beliefs of the players and can be thought of as the cost of the
truthful opinion vector (in which the opinion of every player is equal to her belief). In particular,
we prove a lower bound on the optimal social cost (in Lemmas 3.11) and an upper bound on the
social cost of any pure Nash equilibrium, both expressed in terms of this quantity. The bound

on the price of anarchy then follows by these relations; see the proof of Theorem 3.12.

Consider an n-player k-COF game with belief vector s = (s1, ..., s,,). For player i, we denote
by £*(i) and r* (i) the integers in [n] such that £* (i) < i < r*(i), r* (1) —£*(i) = k, and [s,« ;) =S¢+ ()|

is minimized. The proof of the next lemma exploits linear programming and duality.

Lemma 3.11. Consider a k-COF game with belief vector s = (s1, ..., sp) and let z be any deterministic

opinion vector. Then,

1 n
> g i — Sprrn .
SC(Z7 S) = 2(k+ 1) - |Sr (3 — S¢ (Z)|

Proof. Consider any deterministic opinion vector z and let = be a permutation of the players
so that z(j) < 2r(;41) for each j € [n — 1]. We refer to player 7(j) as the player with rank

j. 1 For each player i, we will identify an effective neighborhood F;(z, s) that consists of k + 1

'Note that we have proved monotonicity of opinions for pure Nash equilibria only (Lemma 3.2) and it is not clear
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Figure 3.6: An example of the quantities used in the proof of Lemma 3.11. Let k = 2 and i =
4. Then, the neighborhood of player 4 is Ny(z,s) = {2,6}, the smallest contiguous interval
containing the opinions of players in Ny(z,s) U {4} is J4(z,s) = [z4, z¢], the set of players with
opinions in J4(z,s) is D4(z,s) = {1, 2, 3,4, 6}, the effective neighborhood is Fy(z,s) = {1, 3,4},

and, hence, ¢(4) = 1, and 7(4) = 4.

players with consecutive ranks and includes player 4. Define (i) and 7(i) to be the players in
F;(z,s) with the lowest and highest belief, respectively. In the extreme case where all players
in F(z,s) have the same belief, we let £(i) and (i) be the players with the lowest and highest
ranks, respectively. The effective neighborhood will be defined in such a way that it satisfies

the properties cost;(z,s) > zx(;) — 2; and cost;(z,s) > 2z; — Zj4)-

Let N;(z,s) denote the neighborhood of player i, i.e., the set of players (not including 7)
with the % closest opinions to the belief s; of player i. Let J;(z,s) be the smallest contiguous
interval containing all opinions of players in N;(z,s) U {i} and let D;(z,s) be the set of players
with opinions in J;(z,s). Clearly, |D;(z,s)| > k + 1. We define F;(z,s) to be a subset of D;(z,s)
that consists of k£ + 1 players with consecutive ranks including player i. See Figure 3.6 for an

illustrative example of all quantities defined above.

Let ¢'(i) and /(i) be the players in N;(z,s) with the leftmost and rightmost opinion. In
order to show that the definition of Fj(z,s) satisfies the two desired properties, we distinguish
between three different cases depending on the location of opinion z; among the players in

Ni(z,s) U {i}.

* Case I: Player i has neither the leftmost nor the rightmost opinion in N;(z,s) U {i}, i.e.,
zp@y < zi < Zp(p).- 2 In this case, J;(z,s) = [2e(3)» 2 (3)]- Then, the definition of N;(z,s)
implies that cost;(z,s) > z,(;) — z; and cost;(z,s) > z; — 2y(;). Hence, cost;(z,s) > |z; —

z;| for every z; € Ji(z,s) or, equivalently, j € D;(z,s) and, subsequently, for each j €

whether such a monotonicity property holds for opinion vectors of minimum social cost. In addition, the statement
of Lemma 3.11 refers to any opinion vector. This clearly includes non-monotonic ones, so we need to rank players
in terms of opinions in the proof.

2Case I cannot appear when k = 1.
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Fi(z,s). This implies the two desired properties cost;(z,s) > zx;) — 2; and cost;(z,s) >
Zi = Zjp)-

* Case II: Player i has the leftmost opinion in N;(z,s) U {i}, i.e., 2; < zp(;). Then, Ji(z,s) =
[2i, 2p1(;)]- Now, the definition of N;(z,s) implies that cost;(z,s) > z,(;) — z; and, hence,
cost;(z,8) > |zj—z;| forevery z; € J;(z,s) or, equivalently, j € D;(z,s) and, subsequently,

for each j € Fj(z,s). Again, this implies the two desired properties.

* Case III: Player i has the rightmost opinion in N;(z,s)U{i},i.e., z; > Zp(;)- Then, J; (z,8) =
[20(s), zi]. Now, the definition of N;(z,s) implies that cost;(z,s) > z; — 24(;) and, hence,
cost;(z,s) > |zj—z;| forevery z; € Ji(z,s) or, equivalently, j € D;(z,s) and, subsequently,

for every j € Fj(z,s). Again, the two desired properties follow.

By setting the variable ¢; equal to cost;(z, s) for i € [n], the discussion above and the fact that
cost;(z,s) > |s; — z;| imply that the opinion vector z together with t = (¢1,...,t,) is a feasible
solution to the following linear program:

minimize Z t;
i€n]
subject to t; + z; > s;, Vi € [n]
ti — z; > —s, Vi € [n]
ti +2i — 275 > 0,Vi € [n] such that 7(i) # i
ti+zg; — 2 =2 0,Vi € [n] such that £(i) # i

ti,zi > 0,Vi € [n]

Using the dual variables o, 8;, i, and d; associated with the four constraints of the above

LP, we obtain its dual LP:
maximize Z Si0; — Z Siﬁi
i€[n] i€[n]
subject to oy + B; + i - 17(i) # i+ §; - 10(i) # i < 1,Yi € [n]
Qi = Bi+yi W) #i—06)- L) #£i— > v+ Y §<0,Vien]
JAuT(g)=1 jl(5)=i
a4, Bia Vi, 52 > 0

The indicator 1.X is equal to 1 when the condition X is true, and 0 otherwise. We will show

that the solution defined as
o, €] :7() =3}
‘ 2(k +1) ’
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{j € [n]: £(j) = i}
2(k+1) ’
1
2(k+1)’

is a feasible dual solution. Indeed, to see why the first dual constraint is satisfied, first observe

Bi =

Vi =0; =

that player ¢ belongs to at most 2k + 1 different effective neighborhoods. Hence, player ¢ can
have the lowest or highest belief among the players in the effective neighborhood of at most
2k + 1 players (implying that a;; + 5; < 1 — k+1 ) when 7(i) = i or £(i) = i and of at most
2k players (implying that a; + 8; < 1 — ¢ +1) when 7(i) # i and /(i) # i. The first constraint

follows.

It remains to show that the second constraint is satisfied as well (with equality). We do so

by distinguishing between three cases:

e When 7(i) # i and £(i) # i, the dual solution guarantees that o;; = 3 ()= Vi and
the term ¢; in the left-hand side of the second constraint cancels out with the sum of +’s.
Similarly, 5; = il ()= ; and the term f3; cancels out with the sum of §’s. Also, the

terms ~; and §; are both equal to 2(#1) and cancel out as well.

* When 7(i) = i (then, clearly, £(i) # i), we have that o;; = &; - 1£(i) # i + D jtii(G)=i Vi
(cancelling out the first, fourth and fifth terms) and ; = iid()=i 9 (cancelling out the
second and sixth terms), and the second constraint is satisfied with equality as the third

term is zero.

e Finally, when /(i) = i (now, itis #(i) # i), we have that a; = 3 ji(j)=i V5 (cancelling out
the first and fifth terms) and §; = i - 17(i) # i+ 3_, ;.5(;)~; ; (cancelling out the second,
third and sixth terms), and the second constraint is satisfied with equality as the fourth

term is zero.

So, the social cost of the solution z is lower-bounded by the objective value of the primal

LP which, by duality, is lower-bounded by the objective value of the dual LP. Hence

s) > Z S0 — Z 5i 3

i€[n] i€[n]
k:+ D (Z {7 el ) =i}si— > |{j€n]:l(j)= Z}sl)
€[n] i€[n]

k+1 Z = Si)

i€ln]
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1
= ) 210 sl

The last equality follows since s;(;y > s iy by the definition of (i) and £(i).

Note that for each player 4, there are at least k£ + 1 beliefs of different players with values
in [s5,), 87(3)|, including player i. By the definition of *(i) and r* (i) for each player i, the above
inequality yields

1

SC(z,8) =2 57— ()~ Sex(i)
(ZS)—2(k+1)gﬁ;}‘s o = 2ol

as desired. O

We are now ready to prove our upper bound on the price of anarchy for k-COF games. In
our proof, we exploit the mononicity of opinions in a pure Nash equilibrium and we associate
the cost of each player in the equilibrium to the same quantity used in the statement of Lemma

3.11.
Theorem 3.12. The price of anarchy of k-COF games over pure Nash equilibria is at most 4(k + 1).

* *

Proof. Consider a k-COF game with belief vector s = (s1,...,sy), and let z* = (z],..., 2;;) be

any opinion vector that minimizes the social cost. By Lemma 3.11, we have

1 n
( * > * () — * (7). .
S (Z 75) = 2(k 1) ;:1 ’31” (i) — Se (z)| (3 7)

Now, consider any pure Nash equilibrium z of the game. We will show that

SC(Za S) <2 Z ’sr*(i) - 5€*(i)|a (38)

i=1

and the theorem will then follow by inequalities (3.7) and (3.8).
The rest of this proof is, therefore, devoted to showing inequality (3.8). To this end, we will
show that, for any player i, we have cost;(z,s) < 2(s,«(;) — S¢+(;)). Then, inequality (3.8) will

follow by summing over all players.

Consider an arbitrary player i and, without loss of generality, let us assume that z; > s; (the
case z; < s; is symmetric). Recall that /(i) and (i) denote the players in N;(z,s) U {i} with the
leftmost and rightmost point, respectively, in I;(z, s) and note that (i) — £(i) = k. First, observe
that if z,(;) = z;, the assumption 2; > s; implies that all players in N;(z,s) U {i} have opinions

at s; (since, by Lemma 3.1, z; is in the middle of interval I;(z,s) at equilibrium). In this case,
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cost;(z,s) = 0 and the desired inequality holds trivially. So, in the following, we assume that
(i) > iand z.(; > 2, i.e., 2, is at the right of z; which in turn is at the right of (or coincides
with) s;.

Recall that, for player i, ¢*(i) and r*(i) denote the integers in [n] such that £*(i) < i < r*(i),
r*(i) — £*(i) = k, and |s,«(;) — S¢+(;)| is minimized. Since 7(i) — £(i) = 7*(i) — £*(i) = k, we

distinguish between two main cases depending on the relative order of (i) and r*(i).

Case I. r(i) > r*(i) and £(i) > £*(i). Since z,(;) is at the right of s; and £*(i) does not belong
to the neighborhood of player i (while player r(i) does so by definition), z-(;) is at the left of s;

and, furthermore, Zr(i) = Si < 8i — Zg(;) OF, equivalently,
Zr(i) < 28; — 2 (3).- (3.9)
This yields
cost;(z,8) = 2,5 — 2i < 28i — 2p(3) — Zi- (3.10)

These inequalities will be useful in several places of the proof for this case below.

If 24«3y > s¢(;) then, since r*(i) > i and z; > s;, inequality (3.10) becomes cost;(z,s) <
8i — Sp=(i) < Sp(s) — Sp=(;) and the desired inequality follows. So, in the following, we assume
that zp. ;) < sp+(;) 1., 24+ () s (strictly) at the left of s;. ;). Hence, £*(i) has her leftmost neighbor

with 2y« (4)) < 2p+(;) and, by Lemma 3.1,

Zp(e+ (iy) T MaxX{ S+ (3), Zr(e+ (i) }
sy = “HE0) L aalg (3.11)

Since 7*(i) — ¢*(i) = k and £(¢*(i)) < ¢*(i), we have r*(i) — £(¢*(i)) > k, and, therefore,
r*(i) does not belong to the neighborhood of ¢*(i). Hence, sp-(;y — oo+ (s)) < 2p+(i) — Se=(3) OF,

equivalently
Zg(e+ (1)) > 285*(1-) = Zp(4) > 285*@) —2s8; + 20% (i) (312)

where the second inequality follows by our case assumption 2, (;y < 2,(; and inequality (3.9).

We now further distinguish between two cases, depending on whether player i belongs to

the neighborhood of player ¢*(7) or not.
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Casel.l. 7€ N, 0 (z,s); see also Figure 3.7a for an example of this case. Then, we have z; <

2y (¢+()) and, subsequently,
max{Sg« (i), Zr(e+ (i)} = Zr(e+(i)) = Zi- (3.13)

Using inequalities (3.12) and (3.13), (3.11) yields

Rex(i) | i

2 2’

Zps(3) = Sex(i) — Si +
which implies that 2y« (;) > 2s4+(;) — 25; + 2;. Now, inequality (3.10) becomes
COSti(Z,S) <A4s; — 285*(1-) —2z; < 28; — 28@*(1') < Q(Sr*(i) - Sé*(i))
as desired. The second inequality follows since z; > s; and the last one follows since 7*(i) > i.
Case 1.2. i ¢ Ny (;)(z,s); see also Figure 3.7b for an example. Then, we have sy« ;) — zg(p+(3)) <

2 — 8¢=(i), which implies that z«(;)) > 2s4+(;) — 2i. Using this inequality together with the fact

that maX{Sg* (i) Br(ex (z))} > Sypx O (311) ylelds

3Spx(iy — Zi
Z@*(i) Z +
and inequality (3.10) becomes
3 zi 3 3
cost;(z,s) < 2s; — 250(0) ~ 5 S 58T 586() < 2(8p=(5) = Se+(3));

as desired. The second last inequality follows since z; > s; and the last one follows since 7*(i) >

1.

Case IL. 7(i) < r*(i) and £(i) < £*(i). Since z; is in the middle of the interval I;(z,s) and z,;

is the rightmost opinion in I;(z, s), we have

- min{s;, Zzz(z')} + 2Zr () ) -|2- Prti) . #00) ‘;’Zr*(i)'

Since s; < z;, the last inequality yields
Zgx(i) = 28; = Zpx(i)- (3.14)
We also have
costi(z,8) = 2,5 — 2i < Zpe(3) — Zi- (3.15)
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I Ip<(;y(2,8)
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|

‘L — - | S— - ']
2e(e* (1)) RZex (i) Sex(i)  Se(s) S Zi  Srx(i)  Sr(i)

(@)

[ Ip(3)(2,8)
|
|

‘I’ | =
Z0(e*(4)) e (i) Sex () Se(i) Si Zi  Sex(i)  Sr(i)

(b)

I’r*(i) (Z,S) E
|

|

= = . = .
Se(i) Sex(i)  Si Zi Sr(i) Srx(i) Zre(i) Zr(r*(i))
(©)
I I+ (;)(2,8) |
" » s » | ‘If
Se(i) Sex(i)  Si Zi Sr(i) Srx(i)  Zrx(3) Zr(r*(3))
(d)

Figure 3.7: Indicative examples of the different cases in the proof of Theorem 3.12. Subfigures
(a) and (b) concern Case I, as (i) > r*(i) and ¢(i) > £*(i), while subfigures (c) and (d) fall under
Casell, as r(i) < r*(i) and £(i) < £*(7).
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If z,(jy < 5p+(;) then, since sg(;y < s; < 2;, inequality (3.15) yields cost;(z,s) < s,+(;) — si <
Sp+(7) — S¢=(i), Which is even stronger than the desired inequality. So, in the following we assume
that z,«(j) > s,+(;), i.€., zp«(;) is at the right of s,..(;). Since z,(; is in the middle of the interval

I+(;y(2,8), we have that (r*(i)) > r*(i) and, therefore,

min{sr* i) RU(r* (i } + 2
(i) = (4) (2( ) (@) (3.16)

Moreover, since r(r*(i)) — £*(i) > r*(i) — £*(i) = k, player ¢*(i) does not belong to the
neighborhood of player 7*(i). Hence, z,(,+(i)) — Sp+(s) < Sp=(i) — 2¢+(;) Which, together with
inequality (3.14), yields that

Zr(r*(i)) S 287.*(1-) — Zyx (4) S 25r* (1) — 282' + Zr*(i)- (317)

We now further distinguish between two cases, depending on whether player i belongs to

the neighborhood of player r*(i) or not.

Case IL1. i € N,.(;(z,s); see also Figure 3.7c for an example. Then, using the fact that
min{s,«(;), 2er=(i)) } < Ze(r+(5)) < 2 and inequality (3.17), equation (3.16) becomes

28,0y — 280 + 2o
zr*(i)SZZ+ i (Z)Q ¥ A

and, equivalently, Zpe() < 20+ 28,5 — 28i. Hence, inequality (3.15) yields
costi(z,8) < 25, (5 — 28; < 2(8p+(5) — S+(i) )

as desired. The last inequality follows since ¢*(i) < 7.

Case IL2. i ¢ N,-(;(z,s); see Figure 3.7d for an example. Since i does not belong to the
neighborhood of player 7*(i) but player r(r*(i)) does, we have that 2, (.« ;)) — 8;+(i) < Sp=(5) — 2i
or, equivalently, z,(,«(j) < 28,+(;) — z;. Then, using also the fact that min{s,-(;y, zy(+(i)) } < 8p+ (i),

equation (3.16) becomes
337,,* (@) — Z3

Zpx(i) < 9

and (3.15) yields

cost;(z,8) < ~(8p() — 2i) < 5(Sp+(5) = Se+(3));

N W
N W

which is even stronger than the desired inequality. The last inequality follows since z; > s; and

() < i.
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So, we have shown that in the pure Nash equilibrium z and for any player ¢, we have that
cost;(z,8) < 2(s,+(;) — S¢+(;))- By summing over all players, we obtain inequality (3.8) and the

theorem follows. 0
3.8 An improved bound on the price of anarchy for 1-COF games

For the case of 1-COF games we can prove an even stronger statement following a similar proof
roadmap as in the previous section, but using simpler (and shorter) arguments. We denote by
7(i) the player (other than 7) that minimizes the distance |s; — s,,(;)|; note that n(i) € {i—1,i+1}.
The proof of the next lemma (which can be thought of as a stronger version of Lemma 3.11 for
1-COF games) relies on a particular charging scheme that allows us to lower-bound the cost of

each player in any deterministic opinion vector.

Lemma 3.13. Consider a 1-COF game with belief vector s = (s1, . .., sp) and let z be any deterministic

opinion vector. Then,

1 n
5C(z,5) > 5 > s = syl
i=1

Proof. We begin by classifying the players into groups and, subsequently, we show how the
costs of different groups can be combined so that the lemma holds. We call a player i with
zi & [si—1, Si+1) a kangaroo player and associate the quantity excess; with her. If z; € [s;, 5j11]
for some j > i, we say that the players in the set C; = {i + 1, ..., j} are covered by player i and
define excess; = z; — s;. Otherwise, if z; € [sj_1, s;| for some j < i, we say that the players in

the set C; = {j,...,i — 1} are covered by player i and define excess; = s; — z;.

Let K be the set of kangaroo players and C the set of players that are covered by a kangaroo;
these need not be disjoint. We now partition the players not in K U C into the set L of large
players such that, for any i € L, it holds cost;(z,s) > $(|s; — sy(iy|), and the set S that contains

the remaining players who we call small. See also Figure 3.8 for an example of these sets.

We proceed to prove five useful properties (Claims 3.14-3.18); recall that o (i) denotes the
single neighbor of player i.

Claim 3.14. Let i € K. Then, cost;(z,s) — excess; > (|s; — S| + 2 jec; 155 — Sni)l)-

Proof. We assume that z; > s; (the other case is symmetric). Let ¢ be the player with the

rightmost belief that is covered by i. Then, excess; = z; — so. We have
cost;(z,s) — excess; = max{|s; — 2|, [2i — 25(3)|} — (2 — s0)
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/mr\./\-

S1 52 21 Z3 53 22 24 S4 Z5 S5

Figure 3.8: An example with kangaroos, covered, large, and small players. In particular, 1 € £
as 21 ¢ [s1,52],2 € KNC as she is covered by player 1 and, in addition, z; ¢ [s1, s3]. Similarly,
3 € C as she is covered by player 2, while 4 and 5 are neither kangaroo nor covered. Since

costy(z,8) < %(34 — s3), itis 4 € S, while, since costs(z,s) > %(35 — s4), wehave 5 € L.

-1
> 50— si= ) (sj41—55)
j=i
1
> 3(Isi = syl + D Isi = suipD)
JjeC;
as desired. 0]

Claim 3.15. Leti € S such that o(i) € K. Then, cost;(z,s) + excess,(; > s — Syl

Proof. We assume that o (i) > i (the other case is symmetric). If z,(;) > s,(;), then

cost;(z,s) = max{|s; — zi|, |zi — z,()|}

1 1

> 5(%(@‘) —5) > 5(50(1‘) — 8i)
1

> §|Sz - Sn(i)|’

which contradicts the fact that 7 is a small player. Hence, z,(;) € [si, 54(;)], otherwise player i
would be covered. Let j be the player with the leftmost belief that is covered by player (7).
Then, excess,(;) = sj — z,(;)- We have
cost;(z,s) + excess,(;y = max{|s; — zl, |zi — 2zo(5)|} + 55 — 20(3)
Z 5 (2ot = i) + 5 (85 = 20() = 5(55 = 1)

> glsi = sne)]

as desired. O

Claim 3.16. Let i € S such that o(i) € L or o(i) € C\ K. Then, cost;(z,s) + cost,(;(z,s) >

%(!31‘ - Sn(z')! + \Sa(z’) - Sn(a(i))D-
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Proof. We assume that o (i) > i (the other case is symmetric). If z,(;) > s,(;), then

costi(z,s) = max{|s; — zl, [2i — 2o(5)|}

1 1
> 5(%(2‘) —5;) > 5(50(1‘) — 8i)

1
> §|Si_5n(i)|7

which contradicts the fact that 7 is a small player. Hence, z,(;) € [si, 54(;)], otherwise player i

would be covered. Then,

COSti(27 S) + COSto(i) (27 S) = max{|5i - Zi’a ‘Zi — Zo (i) |} + max{|50(i) — Zo(i) |7 |Zo(i) — Zg(o(i)) |}

2 Zo(i) — % So(i) — Zo(i) = So(i) — Zi-
Since ¢ is small, we have z; < s; + %(sa(i) — s;) and we get
2 1 1
cost;(z,s) + costy(;)(2,8) > g(Sa(z‘) —8i) > §|Sz‘ — Sn@i)| + §|Sa(i) — Sn(o))]

as desired. O

Let N(S) denote the set of players j that are neighbors of playersin S (i.e., j € N(S) when

o(i) = j for some player i € 5).

Claim 3.17. N (S) does not contain small players.

Proof. Assume otherwise that for some player i € S, o(i) also belongs to S. Without loss of

generality o (i) > i. If 2,(;) > s,(;), then
1 1 1
costi(z,8) = glzo() = sil 2 Slso) = sil 2 glsi = syl

contradicting the fact that i € S. So, 2,(;) < $4(;)- Also, 2,(;y > s; (since neither i is covered
nor o (i) is kangaroo). Since o (i) is small, s,(;) — 253) < %|sg(i) — Spo@))] < %(sg(i) — ), e,

Zo (i) > %sa(i) + %si. Hence,

(20(i) — 5i) > 5(So(s) — i)

N | =

cost;(z,s) >
which contradicts ¢ € S. O

Claim 3.18. For every two players i, € S, (i) # o(i').

Proof. Assume otherwise and let o(i) = o(i') = j with i < ¢'. If z; & [s;, si7], then the cost

of either i or ¢ is at least %(sif — s;), contradicting the fact that both players are small. Hence,
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zj € [si, si]. Notice that s; € [s;, s;/] as well, otherwise either i or i’ would be covered by j. Now

the fact that ¢ and ¢’ are small implies that
1 1 1 1
cost;(z,s) + costy (z,8) < §|S,L — Syl + g\si/ = spanl < 5(s5 —si) + g(si/ —5j) = g(si/ — 5).

On the other hand,

N =

cost;(z,s) + cost;/(z,s) >

a contradiction. O

We now consider the social cost of z due to players of different groups and exploit the claims

above so that we obtain the lemma. In particular, we have

n
= Z cost;(z,s)
i=1

> Z (cost;(z,s) + excess,(;))
1€S:0(i)EX

+ Z (costi(z,s) + cost,(;(z,s))
1€S:0(i)€LU(C\K)

+ Z (cost;(z,s) — excess;) + Z cost;(z,s)

iek i€L\N(S)

> lsi— syl

i€S:o(i)ek

1
3 D (Isi— sl + 1506 — suen))

i€S:0(i)eLU(C\K)

+3 Z(st ')+Zsj8n<j>>+; > lsi= sl

zeIC JjeC; 1€L\N(S)

> s

AV
W =

w\r—‘

as desired. The first inequality follows by the classification of the players and due to Claims
3.17 and 3.18. The second one follows by Claims 3.15, 3.16, and 3.14, and by the definition of
large players. The last one follows since the players enumerated in the first two sums at its left

cover the whole set S (by Claim 3.17). O

We are ready to present our upper bound on the price of anarchy for 1-COF games.

Theorem 3.19. The price of anarchy of 1-COF games over pure Nash equilibria is at most 3.
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Proof. Let us consider a 1-COF game with n players and belief vector s. Let z* be an optimal
opinion vector and recall that 7(7) is the player that minimizes the distance |s; —s,;)|. By Lemma

3.13, we have
* ]' g
SC(z",8) > < Z; |5i — i) - (3.18)
Now, consider any pure Nash equilibrium z of the game. We will show that
SC(z,8) < > [si — syp)l. (3.19)
i=1

The theorem then follows by (3.18) and (3.19).

In particular, we will show that cost;(z,s) < [s; — s,;)| for each player 4. Let us assume that
n(i) = ¢ —1; the case n(i) = i + 1 is symmetric. Recall that o () is the neighbor of player 7 in the

pure Nash equilibrium z. We distinguish between four cases.

* CaseI: 0(i) = i — 1. By Lemma 3.4, we have s;_; < z; < s;. Then, clearly, cost;(z,s) =

|si — zi| < |si — si—1| as desired.

* Casell:0(i) = i+1lando(i—1) = i. By Lemmas3.2and 3.4, wehave s;_; < z;_1 < s; < 2;.
Since player i has player i + 1 as neighbor, we have |z;11 — s;| < |s; — zi—1|. Hence,

cost;(z,8) = |z — si| < |zig1 — si| < |si — zic1] < |85 — si—1].
* Caselll: 0(i) =i+ 1,0(i — 1) =i — 2, and cost;(z,s) < cost;_1(z,s). By the definition of
o(-) and Lemma 3.2, we have z;_9 < z;_1 < 5,1 < 5; < 2; < z;+1. We have
cost;(z,s) < 2cost;_1(z,s) — cost;(z,s)
= [si-1 = zi—2| — |z — s
<lzi — si—1] — |z — sil
= [s; — si—1]-
The second inequality follows since player ¢ — 2 (instead of 7) is the neighbor of player
1 — 1.
* CaselIV:o(i) =i+ 1,0(i— 1) =i — 2, and cost;(z,s) > cost;_1(z,s).
cost;(z,s) < 2cost;(z,s) — cost;_1(z,s)
= |zit1 — il = [si-1 — 2i—1]

<Isi — zi—1| — [Si—1 — Zi—1]
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=|s; — si—1].

The second inequality follows since player i 4 1 (instead of i — 1) is the neighbor of player

i.
This completes the proof. O
3.9 Lower bounds on the price of anarchy

This section contains our lower bounds on the price of anarchy. > We begin by considering the
simpler case of 1-COF games, for which we present a tight lower bound of 3 for pure Nash
equilibria (Theorem 3.20) and a lower bound of 6 for mixed Nash equilibria (Theorem 3.21).
We remark that, for 1-COF games, this implies that mixed Nash equilibria are strictly worse
than pure ones. Then, we study the general case of k-COF games and we show lower bounds
for pure and mixed Nash equilibria (Theorems 3.22 and 3.23, respectively) that grow linearly
with .

3.9.1 The case of 1-COF games

We now present our lower bounds for the case of 1-COF games; both results rely on the same,

and rather simple, instance.

Theorem 3.20. The price of anarchy of 1-COF games over pure Nash equilibria is at least 3.

Proof. Let A € (0,1) and consider a 1-COF game with six players and belief vector s = (—10 —
A, —10 — A\, =2 — A\, 2+ A\, 10 + A, 10 + ). This game is depicted in Figure 3.9a. We can show

that the opinion vector (see Figure 3.9b)
z=(—-10—X,—-10— X, =6 — X, 6+ X, 10+ X,10 + )

is a pure Nash equilibrium with social cost SC(z, s) = 8. The first two players suffer zero cost as
they follow each other and their opinions coincide with their beliefs; the same holds also for the
last two players. For the third player, itis 0(3) € {1,2} since |21 —s3| = |20—53| =8 < |z4—s3| =
84 2\ and z3 is in the middle of the interval [-10 — A, —2 — \|; hence, cost3(z, s) = 4. Similarly,
we have o(4) € {5,6}, z4 lies in the middle of the interval [2 + A, 10 + \] and costy(z,s) = 4.

Hence, z is indeed a pure Nash equilibrium.

*We remark that our lower bounds on the price of stability in Section 3.5 are also lower bounds on the price of
anarchy. However, the lower bounds presented in this section are much stronger.
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—10—-A —6—-A —-2-A 24+ A 6+ A 104+ A

W )

= .Q—Q. u
—-10— X —2 - =22 A 94 10+ A

©)
Figure 3.9: (a) The 1-COF game considered in the proofs of Theorems 3.20 and 3.21. (b) The pure
Nash equilibrium vector z (see the proof of Theorem 3.20) with social cost 8. (c) The opinion

vector z with social cost %.

Now, consider the opinion vector (see Figure 3.9c)

—2—-X 2
7= (—10—)\,—10—)\,3)\,;/\,104—)\,104—)\)
which yields a social cost of SC(z, s) = % ; here, again, the first and last two players have zero

cost, but players 3 and 4 now each have cost £22 since they follow each other. The optimal

social cost is upper bounded by SC(z) and, hence, the price of anarchy is at least

SC(z,s) 3
SC(z,s) 1+A/2’

and the theorem follows by setting A arbitrarily close to 0. O

Our next theorem gives a lower bound on the price of anarchy over mixed Nash equilibria
for 1-COF games; we remark that this lower bound is greater than the upper bound of Theorem

3.19 for the price of anarchy over pure Nash equilibria.

Theorem 3.21. The price of anarchy of 1-COF games over mixed Nash equilibria is at least 6.

Proof. Consider again the 1-COF game depicted in Figure 3.9a with six players and beliefs s =
(=10 = X\, =10 — A\, =2 — A\,2 + A\, 10 + A, 10 + A), where A € (0, 1). To simplify the following
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discussion, we will refer to the first two players as the L players, the third player as player ¢,

the fourth player as player r, and the last two players as the R players.

Let z be a randomized opinion vector according to which z; = s; forevery i € LU R, 2/ is
chosen equiprobably from {—6—\, —6+3\}, and z, is chosen equiprobably from {6+, 6—3A}.
Observe that o(¢) € L whenever z, = 6 + A, and o({) = r whenever z, = 6 — 3); each of these
events occurs with probability 1/2. Hence, we obtain

1 /4 444X 1/12—-2X\  12—-6A
E[costy(z,s)] = E[cost,(z,s)] = B (2 +—3 > +5 < 5 T > =8— ),

and, thus, E[SC(z,s)] = 16 — 2\. In the following, we will prove that z is a mixed Nash
equilibrium. First, observe that all players in sets L and R have no incentive to deviate since
they follow each other and have zero cost. We will now argue about player ¢; due to symmetry,

our findings will apply to player r as well.

Consider a deterministic deviating opinion y for player ¢. We will show that E[cost,(z,s)] <
E, ,[cost;(y,z_¢),s] for any y, which implies that player ¢ has no incentive to deviate from the

randomized opinion z,. Indeed, we have that

E, ,[cost;((y,z—¢),s)]

1 1
:Qmax{|—2—A—y|,|y+10+)\]}+§max{|—2—)\—y|,|6—3)\—y|}
1 1
> 5y +10+2) +5(6=3X —y)
Y

where the inequality holds since max{|a|, ||} > a for any a and b. Hence, player ¢ has no
incentive to deviate from her strategy in z, and neither has player r due to symmetry. Therefore,

z is a mixed Nash equilibrium.

Now, consider the opinion vector

—2—X 24+
zZ= (—10—)\,—10—)\,3,;,104—)\,10—1—)\)
which, as in Theorem 3.20, yields a social cost of SC(z,s) = %. Hence, the optimal social cost

is upper bounded by SC(z, s), and the price of anarchy over mixed equilibria is at least

E[SC(z,s)] 316 —2A
SC(z,s)  ~ 8+4)\’

and the theorem follows by setting A arbitrarily close to 0. O
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4+ 44X 16 42X

©
O O ®

Figure 3.10: (a) The k-COF game considered in the proofs of Theorems 3.22 and 3.23, for k£ > 2.
(b) The pure Nash equilibrium opinion vector z (see the proof of Theorem 3.22). (c) The optimal
opinion vector z for £ > 3. (d) The optimal opinion vector z for k = 2. Observe that the optimal

opinion vector changes at k£ = 2 due to the neighborhood size.

3.9.2 The general case of k-COF games with k > 2

We will now present lower bounds on the price of anarchy for k-COF games, with k£ > 2. We
start with the case of pure Nash equilibria and continue with the more general case of mixed
equilibria. As in the case of 1-COF games, a particular game will be used in order to derive the

lower bounds both for pure and mixed Nash equilibria.

Theorem 3.22. The price of anarchy of k-COF games over pure Nash equilibria is at least k + 1 for
k > 3, and at least 18/5 for k = 2.

Proof. Let A € (0,1) and consider a k-COF game with 3k + 3 players, for k¥ > 2, that are
partitioned into the following five sets. The first set L consists of k+1 players with s; = =16 -2\

for any 7 € L, the second set consists of a single player ¢ with s, = —4 — ), the third set M has
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k — 1 players with s; = 0 for any i € M, the fourth set is a single player r with s, = 4 + )\, and
the last set R consists of k + 1 players with s; = 16 4+ 2\ for any ¢ € R. This instance is depicted
in Figure 3.10a.

Let z be the following opinion vector: z; = —16—2A forany i € R, zy = —8—\, z; = 0 for any
i€ M,z =8+ )\ and z; = 16 + 2\ for any 7 € R; see Figure 3.10b. It is not hard to verify that
this opinion vector is a pure Nash equilibrium with social cost SC(z,s) = (8 + \)(k + 1). First,
observe that all players in sets L and R have zero cost, and, hence, have no incentive to deviate
to another opinion. Furthermore, no player i € M has an incentive to deviate either since z; lies
in the middle of the interval [-8 — X, 8 + A] which is defined by the opinions of players ¢ and r
who, together with the remaining players of M, constitute the neighborhood N;(z, s) of player
i. The cost experienced by such a player i is 8 + \. Finally, the neighborhood N/(z, s) of player
¢ consists of all players in M (who have opinions that are closest to s¢) and some player i € L;
note that player r does not belong to Ny(z,s) since z, — sy = 12 +2X > 12 — A = sy — z; for all
i € L. Hence, player ¢ has no incentive to deviate to another opinion since z, lies in the middle
of the interval [-16 — 2\, 0] and she experiences cost equal to 8 + X. Due to symmetry, player
r does not have incentive to deviate as well. Hence, z is indeed a pure Nash equilibrium with
SC(z,s) = (8 + A\)(k +1).

We now present an opinion vector z with social cost SC(z,s) = 8 + 2\ for £ > 3 and
cost(z,s) = 2(4 + A) for k = 2. In particular, for k£ > 3, z is defined as follows: z; = —16 — 2
foranyi € L, %, = % = Z, = 0forany i € M, and 2; = 16 + 2\ for any i € R; see Figure 3.10c.
Observe that all players in L, M, and R have zero cost, while players ¢ and r have cost equal
to 4 + X each. For k = 2, z is defined as follows: Z; = —16 — 2\ forany i € L, Z, = —%(4 +)),
Zi=0foranyiec M, z, = %(4 + ), and Z; = 16 + 2 for any ¢ € R; see Figure 3.10d. Again, all
players in L and R have zero cost. However, players ¢ and r now each have cost 2(4 + \) and

the unique player in M has cost (4 + \).

Clearly, since SC(z, s) is an upper bound on the optimal social cost, we conclude that the

price of anarchy over pure Nash equilibria is at least % for k > 3 and ggiii; for k =2,

and the theorem follows by setting A arbitrarily close to 0. O

We now consider the case of mixed Nash equilibria; we remark that, in this case, our lower

bounds for k& > 2 are smaller than the corresponding upper bounds for pure Nash equilibria.

Theorem 3.23. The price of anarchy of k-COF games over mixed Nash equilibria is at least k + 2 for
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k > 3, and at least 24/5 for k = 2.

Proof. As in the proof of Theorem 3.22, let A € (0, 1) and consider the k-COF game depicted in
Figure 3.10a with 3k + 3 players that form 5 sets. Again, the first set L consists of k + 1 players
where s; = —16 — 2) for all 7 € L, the second set consists of a single player £ with s, = —4 — J,
the third set M has k — 1 players with s; = 0 for all © € M, the fourth set is a single player r
with s, = 4 + ), and the last set R consists of k£ 4 1 players with s; = 16 + 2\ for all i € R.

Consider the following (randomized) opinion vector z: z; = s; for everyi € LU M UR,
while z is chosen uniformly at random among {—8 — A\, —8 4+ 3A} and z, is chosen uniformly
at random among {8 — 3,8 + A}. We will show that the opinion vector z is a mixed Nash
equilibrium with E[SC(z,s)] = 8k + 16 — .

First, observe that the players in sets L and the R constitute local neighborhoods, that is,
Ni(z,s) = L\ {i} for any player i € L, and N;(z,s) = R\ {i} for any player ¢ € R. Hence, all

these players have zero cost and no incentive to deviate.

Next, let us focus on a player i € M. Clearly, the neighborhood of player i consists of the
remaining k — 2 players in M as well as players ¢ and r. The expected cost of player ¢ in z is
Elcost;(z,s)] = 2(8 + A) + 1(8 — 3)) = 8 since at least one of players ¢ and r is at distance 8 + A
with probability 3/4 and both of them are at distance 8 — 3\ with probability 1/4. Hence, these
k — 1 players contribute 8(k — 1) to the expected social cost of z. We now argue that if player
i € M deviates to a deterministic opinion y, her expected cost does not decrease. Clearly, if
y > 3\, then this trivially holds as the expected cost of i is at least y — 2z, which is at least
y + 8 — 3); the case where y < —3)\ is symmetric. Hence, it suffices to consider the case where

ly| < 3A. The expected cost of i when deviating to y is

Ezfi [COSti((ya Z—i)v S)]
1 1
= Zmax{8+>\—y,y+8+>\}+Zmax{8+)\—y,y+8—3)\}
1 1
+Zmax{8—3>\—y,y+8+)\}+1max{8—3)\—y,y+8—3/\}

1 1 1
> (8+/\—y)+Z(8+/\—y)+Z(y+8+)\)+1(y+8—3)\)

Il
SN

)

where the inequality holds since max{a, b} > a for any a and b.

Now, let us examine player r; the case of player ¢ is symmetric. Observe that the £ — 1

players in M always belong to the neighborhood N, (z,s) of player r and it remains to argue
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about the identity of the last player in N, (z,s). Whenever z;, = —8 + 3\, then ¢ € N,(z,s),
otherwise, if zy = —8 — )\, one of the players in set R belongs to N,(z,s). The expected cost of
player r is E[cost,(z,s)] = (8 + \) + (8 + 5A) 4+ 1(16 — 2X) + (16 — 6)) = 12 — A/2, and,
hence, players ¢ and r contribute 24 — X to the expected social cost of z. It remains to show that
player r cannot decrease her expected cost by deviating to another opinion y. The expected cost

of player r when deviating to y is

1 1
E,_[cost:((y,2-r),8)] = 5max{[16 +2A — ], ly|} + 5 max{ly + 8 = 3A [4 + A —y]}
1 1
> 5(16+2/\—y)+§(y+8—3A)

=12 - )/2,

where the inequality holds since max{|a|, |b|} > a for any a and b. Hence, we conclude that z is

a mixed Nash equilibrium with expected social cost E[SC(z,s)] = 8k + 16 — .

As in the proof of Theorem 3.22, there exists an opinion vector z with social cost SC(z,s) =

8 + 2X for k > 3 and SC(z,s) = 3(4 + A) for k = 2. Since SC(z, s) is an upper bound on the

8k+16—=X\
842X

optimal social cost, we have that the price of anarchy over mixed equilibria is at least

3(32—)\)
5(4+X)

for k > 3 and for k = 2, and the theorem follows, by setting X arbitrarily close to 0. []

3.10 Conclusion

In this chapter, we focused on the efficiency and complexity of a simple class of compromising
opinion formation games, which we call k-COF games. In such a game, there exists a set of
players with personal beliefs over some issue, but each of them expresses a public opinion
in order to minimize an explicit cost that is defined as the maximum between the distance of
her opinion from her belief and the distance of her opinion from every opinion expressed in
her neighborhood, which dynamically changes depending on the other players that express

opinion chose to her belief.

In particular, we first proved several structural properties about pure Nash equilibria as
well as that pure equilibria may not exist for any value of k. Then, we proved that the price
of stability and anarchy of general k-COF games grows linearly in terms of k. For the special
case of k = 1, we showed a tight bound of 3 on the price of anarchy, and designed an efficient
algorithm for computing the best and worst equilibrium (in terms of the social cost) by reducing
the corresponding problems to the problems of computing minimum and maximum paths in

particular directed acyclic graphs.
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Chapter 4

Truthful mechanisms for ownership
transfer with expert advice

In this chapter we focus on the design and analysis of near-optimal truthful mechanisms for
ownership transfer; see the discussion in Section 1.3 for an introduction to the problem and

motivating examples. The results presented here can be found in [Caragiannis et al., 2018].
4.1 Overview of contribution and techniques

We focus on ownership transfer and study the very simple but fundamental setting of two
competing agents A and B, and a single expert with cardinal preferences over the three options
of selling to agent A, selling to agent B, or not selling at all (in which case the ownership
transfer does not take place). A mechanism takes as input the bids of the agents and the
expert’s preferences, and decides one of the three options as outcome. In general, mechanisms
are randomized. For a given input, they select the outcome using a probability distribution (or

lottery) over the three options.

We consider mechanisms that can be truthfully implemented as follows. First, the outcome
of the mechanism is complemented with payments that are imposed to the agents. Then, the
lottery and the payments should be such that the expert is incentivized to report her true
preferences in order to maximize her (expected) value for the outcome and the agents are
incentivized to report their true values as bids in order to maximize their utility, i.e., their
expected value for the outcome minus their payment to the mechanism. In the following, we

refer to mechanisms with such implementations as truthful mechanisms.

Interestingly, the theory of mechanism design allows us to abstract away from payments

and view truthful mechanisms simply as lotteries. Well-known characterizations for single-
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parameter mechanism design with money from the literature, as well as new characterizations
that we prove here for lotteries that guarantee truthfulness from the expert’s side, are the main

tools we use in order to constrain the design space of truthful mechanisms in our setting.

We make additional informational restrictions that can further divide truthful mechanisms

into the following classes:

ordinal mechanisms, which ignore the exact bids and the expert’s preference values and

instead take into account only their relative order,

* bid-independent mechanisms, which ignore the bids and base their decision solely on the

expert’s cardinal preferences,

* expert-independent mechanisms, which ignore the expert’s preferences and base their

decision solely on the bids, and

* general truthful mechanisms, which may take both the bids and the expert’s preference

values into account.

We measure the quality of truthful mechanisms in terms of the social welfare, the aggregate
value of the agents and the expert for the outcome. Unfortunately, our setting does not allow
for a truthful implementation of the social welfare-maximizing outcome. Therefore, we resort
to near-optimal truthful mechanisms and use the notion of the approximation ratio to measure
their quality.

For the classes of ordinal, bid-independent, and expert-independent mechanisms, we prove
lower bounds on the approximation ratio of truthful mechanisms in the class and identify the
best possible among them, with approximation ratios of 1.5, 1.377, and 1.343, respectively.
Furthermore, by slightly enhancing expert-independent mechanisms and allowing them to
utilize a single bit of information about the expert’s preferences, we define a template for
the design of new truthful mechanisms. The template defines always-sell mechanisms that
select either agent A or agent B as the outcome. We present two mechanisms that follow
our template, one deterministic and one randomized, with approximation ratios 1.618 and
1.25, respectively. The former is best-possible among all deterministic truthful mechanisms.
The latter is best-possible among all always-sell truthful mechanisms. We also present an
unconditional lower bound of 1.141 on the approximation ratio of any truthful mechanism.

These results are summarized in Table 4.1.
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Class of mechanisms apx. ratio Comment

ordinal 1.5 mechanisms EOM, BOM (Theorem 4.3)
best possible (see Theorem 4.4)
bid-independent 1.377 mechanism BIM (Theorem 4.7)

best possible (Theorem 4.8)
expert-independent 1.343 mechanism EIM (Theorem 4.11)
best possible (Theorem 4.11)

our template 1.25 randomized mechanism R (Theorem 4.14)
best possible, always-sell (Theorem 4.15)
1.618 deterministic mechanism D (Theorem 4.14)
best possible, deterministic (Theorem 4.17)
all mechanisms 1.14 lower bound (Theorem 4.16)

Table 4.1: Overview of our results; see [Caragiannis et al., 2018].

Both our positive and negative results have been possible by narrowing the design space
using the truthfulness characterizations, the particular structure in each class of mechanisms,
as well as the goal of low approximation ratio. In most cases, the design of new mechanisms
turns out to be as simple as drawing a curve in a restricted area of a 2-dimensional plot (for

instance, see Figures 4.2 and 4.3).
411 Chapter roadmap

We begin with a discussion of related work in Section 4.2. Then, we continue with preliminary
definitions, notation and examples in Section 4.3. Then, Sections 4.4, 4.5, and 4.6 are devoted
to ordinal, bid-independent and expert-independent mechanisms, respectively. Our template
and the corresponding best possible deterministic and randomized mechanisms are presented
in Section 4.7, while our unconditional lower bounds are presented in Section 4.8. Finally, we

conclude in Section 4.9
4.2 Related work

Our setting can be viewed as an instance of approximate mechanism design, with [Nisan and
Ronen, 2001] and without money [Procaccia and Tennenholtz, 2013], which was proposed for
problems where the goal is to optimize an objective under strict truthfulness requirements.
Myerson [1981] proved necessary and sufficient conditions for (deterministic or randomized)
truthful mechanisms with money. This characterization allowed us to abstract away from the

payment functions (which are uniquely determined given the winning probabilities) on the
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agents’ side, and provided us with tools to argue about the structure of truthful mechanisms

without money on the expert’s side as well.

For settings with money, the VCG mechanism [Clarke, 1971, Groves, 1973, Vickrey, 1961]
is deterministic, truthful, and maximizes the social welfare. However, as we pointed out in
Section 1.3, in our hybrid mechanism design setting we need to take the values of the expert
into account as well, and therefore VCG is no longer truthful nor optimal (see Example 4.1). On
the expert’s side, truthful mechanisms can be thought of as truthful voting rules; any positive
results for deterministic such rules are impaired by impossibility theorems [Gibbard, 1973,

Satterthwaite, 1975] which limit this class to only dictatorial mechanisms.

In contrast, the class of randomized truthful voting rules is much richer and includes many
reasonable truthful rules that are not dictatorial. In fact, Gibbard [1977] characterized the class
of all such ordinal rules; a general characterization for all cardinal rules is still elusive. To this
end, a notable amount of work in the classical economics literature as well as in computer
science has been devoted towards designing such rules and proving structural properties for
restricted classes. Gibbard [1978] provided a characterization which only holds for discrete
strategy spaces, and later Hylland [1980]! proved that the class of truthful rules that are Pareto-

efficient reduces to random dictatorships.

Freixas [1984] used the differential approach to mechanism design proposed by Laffont
and Maskin [1980] to design a class of truthful mechanisms which actually characterize the
class of twice differentiable mechanisms over subintervals of the valuation space; the best
possible truthful bid-independent mechanism that we propose in this chapter can be seen as a
mechanism in this class. Barbera et al. [1998] showed that there are many interesting truthful
mechanisms that do not fall into the classes considered by Freixas [1984]. In the computer
science literature, Feige and Tennenholtz [2010] designed a class of one-voter cardinal truthful

mechanisms, where the election probabilities are given by certain polynomials.

Social welfare maximization without payments has been studied in a plethora of papers, in
general social choice settings [Bhaskar et al., 2018, Filos-Ratsikas and Miltersen, 2014] as well as
in restricted domains such as matching and allocation problems [Cheng, 2016, Filos-Ratsikas
et al., 2014, Guo and Conitzer, 2010]. Similarly to our work, Filos-Ratsikas and Miltersen
[2014] use one-voter cardinal truthful mechanisms to achieve improved welfare guarantees.

The presence of the agents significantly differentiates our setting from theirs (as well as other

!Quite remarkably, this paper is unpublished - the result was revisited by Dutta et al. [2007].
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related paper). Another relevant notion is that of the distortion of (non-truthful) mechanisms
which operate under limited (ordinal) information [Anshelevich et al., 2015, Boutilier et al.,
2015, Caragiannis et al., 2017b, Caragiannis and Procaccia, 2011, Caragiannis et al., 2016]. While
the lack of information has also been a restrictive factor for some of our results (in conjunction
with truthfulness), we mainly focused on cardinal mechanisms for which truthfulness is the

limiting constraint.
4.3 Definitions and notation

Our setting consists of two agents A and B who compete for an item (to be thought of as an
abstraction of a merger or acquisition) and an expert £. The agents have valuations w4 and wg
denoting the amount of money that they would be willing to spend for the item, and the expert
has a valuation function v : O — R over the following three options: agent A is selected to get
the item, or agent B is selected, or no agent is selected to get the item. We use © to denote this
last option; hence, O = {4, B, ©}. We use w = (w4, wp) to denote an agent profile and let W be
the set of all such profiles. Similarly, we use v = (v(A),v(B),v(®)) to denote an expert profile
and let V be the set of all such profiles. The domain of our setting is D = V x WW. From now on,

we use the term profile to refer to elements of D.

A mechanism M takes as input from the expert and the agents a profile (v, w) and decides,
according to a probability distribution (or lottery) PM, the pair (o, p) consisting of an option
o € O and a vector p = (pa, pp) indicating the payments that are imposed to the agents. The
execution of the mechanism yields a utility to the expert and the agents. Given an outcome

(0, p) of the mechanism, the utility of the expert is

up(o,p) = v(0)

and the utility of agenti € {A, B} is

(0.p) w; —pi, ifi=o
/u’A 07 - .
P —pi, otherwise.

The expert and the agents submit an expert’s report and bids to the mechanism representing
their corresponding profiles, but may have incentives to misreport their true values in order
to maximize their utility. We are interested in mechanisms that do not allow such strategic
manipulations. We say that a mechanism M is truthful for agent i € {A, B} if for any agent

value w; and any profile (v/,w’),
Bfui (M (V', (wi, w'-5))] = E[u; (M (v, w))],
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where the expectation is taken with respect to the lottery P*. This means that bidding her true
value w; is a utility-maximizing strategy for the agent, no matter what the other agent and the
expert’s report are. Mechanism M is truthful for the expert if for any expert profile v and any
profile (v/, w'),

Efug(M(v,w))] = Elug(M(v',w))].

Again, this means that reporting her true valuation profile is a utility-maximizing strategy for
the expert, no matter what the agents bid. A mechanism M is truthful if it is truthful for the

agents and truthful for the expert.

Our goal is to design truthful mechanisms that achieve high social welfare, which is the
total value of the agents and the expert for the outcome. For a meaningful definition of the
social welfare that weighs equally the expert’s and the agents’ valuations, we adopt a canonical
representation of profiles. The expert has von Neumann-Morgenstern valuations, i.e., she has
valuations of 0 and 1 for two of the options and a value in [0, 1] for the third one. The agent
values are normalized in the definition of the social welfare by dividing with the maximum of

them. Then, the social welfare of an option o € O is

v(0) + —F2e——  ifoec {A, B}

max{wa,wp}’
v(@), otherwise.

We measure the quality of a truthful mechanism M by its approximation ratio, which (by abusing
notation a bit and interpreting M (v, w) as the option decided by the mechanism) is defined as

max,eco SW(o, v, w)

p(M) = sup E[SW(M(v,W),VaW)]‘

(v,w)eD

Low values of p(M ), as close as possible to 1, are most desirable.

Before we continue with the discussion of alternative representation of profiles, we present
an example demonstrating the reason why the mechanism that simply selects the option that
maximizes the social welfare based on the reported profile provided by the expert and the

agents is not truthful.

Example 4.1. Let o and 3 be two parameters in (0, 1) such that & > 3. Consider a profile in
which the expert has values v = (v(A4),v(B),v(®)) = (1,,0) and the agents have values
w = (wa,wp) = (B,1),

If the expert and the agents were truthful, then since o > /3, the mechanism that chooses
the option that maximizes the social welfare would select agent B. From the agent’ side, it is

well-understood how such a mechanism can be implemented; a simple second-price auction
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would incentivize both agents to be truthful and, of course, would choose the one with the
highest value. However, at the same time, we want the expert to be truthful as well, which is
not possible in this particular example. The expert has strong incentive to misreport her value
for agent B and decrease it from « to zero. This way, the output of the mechanism is agent A

for whom the expert has value 1, as opposed to agent B for whom her value is o < 1. O
4.3.1 An alternative view of profiles

In order to simplify the exposition in the following sections, we devote some space here to
introduce two alternative ways of representing profiles, which in turn will showcase more

intuitive ways of realizing truthfulness and will help us in the design of efficient mechanisms.

Without restricting the space of mechanisms that can achieve good approximation ratios
according to our definition of the social welfare, we focus on mechanisms that base their

and wp It will be convenient to use

decisions on the normalized bid values .
max{wa,wp}

w
max{wa,wp}

the following two alternative ways

1x0andh€n
h ¢ z 1 yv O

to represent profiles. These representations are the expert’s and agents” view of the profile,
respectively. Each column corresponds to an option. According to the expert’s view at the left,
the columns are ordered in terms of the expert’s values, which appear in the first row. The
quantities h, ¢, and z hold the normalized agent bids for the corresponding option and 0 for
option @. Essentially, & is the value that the expert’s favourite option has, which can be equal
to 1if it corresponds to the value of the agent with the highest value (high-bidder), equal to some
value y € [0, 1] if it corresponds to the value of the agent with the lowest value (low-bidder), or
0 if it corresponds to the no-sale option ©. Similarly, ¢ and z are the values that expert’s second
and third favourite options have, respectively. According to the agents” view at the right, the
columns are ordered in terms of the bids, which appear in the second row. The quantities ., ¢,
and n now hold the expert valuations for the corresponding options. Now, h is the value that
the expert has for the high-bidder, ¢ is the value of the expert for the low-bidder, and z is the

value that the expert has for the no-sale option. All of them can take values in the interval [0, 1].

These representations yield a crisper way to argue about truthfulness for the expert and
the agents in our main results. Specifically, in Section 4.5, we will study bid-independent
mechanisms, and therefore it makes sense to use the expert’s view of profiles, whereas in

Section 4.6, it will be easier to argue about our expert-independent mechanisms based on the
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agents’ view instead. The agents” view will also be used in Section 4.7, where, the mechanisms
we present use the expert’s opinion only to appropriately partition the input profiles into

categories, and it is therefore easier to argue about their properties using the agent’s view.

Similarly, we use two different representations of the lottery P, depending on whether we
represent profiles according to the expert’s or the agents” view. From the expert’s viewpoint,
PM s represented by three functions gM f M and nM , which correspond to the probability of
selecting the first, second, and third favourite option of the expert, respectively. Similarly, from

M and eM, which correspond

the agents’ viewpoint, P is represented by three functions d/, ¢
to the probability of selecting the agent with the highest bid (or high-bidder), the other agent (or

low-bidder), or option ©.

Example 4.2. Consider a profile with expert valuations 1 for option ©, 0.3 for option A, and 0
for option B and normalized bids of 1 and 0.9 from agents A and B, respectively. Consider a
lottery which, for the particular profile, uses probabilities 0.4, 0.1, and 0.5 for options A, B, and
©, respectively. The expert’s and agents” views of the profile are

1 03 0 and 03 0 1

0 1 09 1 09 0]’
M , fM

respectively. The functions g , and n™ are defined over the 4-tuple of arguments

(x,h,0,z) = (0.3,0,1,0.9) following the expert’s view of the profile and take values 0.5, 0.4,
and 0.1, respectively. Similarly, the functions d™, ¢, and e are defined over the 4-tuple of
arguments (y, h,£,n) = (0.9,0.3,0, 1) following the agents’ view of the profile and take values

0.4, 0.1, and 0.5, respectively. O

In order to handle situations of equal values (e.g., equal bids), we adopt the convention to
resolve ties using the fixed priority A >~ B > @ in order to identify the high- and low-bidder as
well as the highest and/or lowest expert valuation. For example, if the expert has valuations
of 1 for options © and B, we interpret this as option B being her most favourite one. Similarly,
agent A is always the high-bidder and agent B is the low-bidder when their bids are equal.
This is used in the definition of our mechanisms only; lower bound arguments do not depend

on such assumptions in order to be as general as possible.
4.3.2 Reasoning about truthfulness

Let us now explain the truthfulness requirements having these profile representations in mind.
There are two different kinds of possible misreports by the expert. In particular, the expert can

attempt to make
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* a level change in the reported valuation (ECh) by changing her second highest valuation

without affecting the order of her valuations for the options, or

* a reported valuation swap (ESw), i.e., change the order of her valuations for the options as

well as the particular values.
Example 4.3. The profile
1 06 0
09 0 1
is the result of a reported valuation swap by the expert who changes her valuations from

(1,0.3,0) to (0.6,0, 1) for the options (@, A, B). O

There are also two different kinds of possible misreports by each agent, who can attempt to

make

* a level change in the reported bid (BCh) by changing her bid without affecting the order of

bids, or

* a bid swap (BSw) by changing both the bid order and the corresponding values.

0 03 1
1 025 0

is the result of a bid swap deviation by the low-bidder, who increases her bid in the profile

Example 4.4. The profile

above to a new bid that is four times the bid of the other agent. O

A truthful mechanism never incentivizes (i.e., it is incentive compatible with respect to) such
misreportings. We use the terms ECh-IC, ESw-IC, BCh-IC, and BSw-IC to refer to incentive
compatibility with respect to the misreporting attempts mentioned above. Therefore, a truthful
mechanism satisfies all these IC conditions. Before we proceed, we provide a few examples of

truthful mechanisms.

Example 4.5 (A bid-independent ordinal mechanism). Consider the following mechanism
that ignores the bids reported by the agents. With probability 2/3, output the expert’'s most
preferred option and with probability 1/3, output the expert’s second most preferred option.
Adopting the expert’s view of profiles and the corresponding representation of the lottery P,

the mechanism can be written as

2 1
gM(x7h7£> Z) = §7 fM(_x’h,é, Z) = g and nM(xahaga Z) =0.

85



The mechanism can be seen to be truthful by the fact that (a) ignores the bids of the agents
and (b) it always assigns higher probability to the most-preferred outcome for the expert and 0
probability to the least-preferred outcome. Note that using the terminology above, any ordinal
mechanism is ECh by construction, since changing the level in the reported valuation does not

change the outcome. O

Example 4.6 (A bid-independent non-ordinal mechanism). Consider the following mechanism
that ignores the bids reported by the agents. Again, we adopt the expert’s view of profiles and
the corresponding representation of the lottery P; recall that x is the value of the expert for

her second most-preferred outcome. Let P be given by

4 — g2

142
GV l2) = 2 M z) =

1—2x + 22
and 7™M (z,h,0,z2) = —
Note that the mechanism uses the cardinal information of the expert’s report and therefore it
is not ordinal. This mechanism has been referred to in the literature as the quadratic lottery and

has been proven to be truthful [Feige and Tennenholtz, 2010, Freixas, 1984]. O

Example 4.7 (An expert-independent mechanism). Consider the following mechanism that
ignores the expert’s values for the different outcomes. Among the two agents, output the agent
with the highest bid (breaking ties arbitrarily) and charge this agent a payment that is equal to
the bid of the other agent. Charge the other agent a payment of 0. In terms of the agents’ view,

the outcome of the mechanism can be written as
dM(y,h,E,n) =1, cM(yjh,ﬁ, n) =0 and eM(y, h,¢,n) = 0.

This mechanism is the well-known second-price auction [Vickrey, 1961], which is known (and

easily seen) to be truthful. O

It is not hard to observe that none of the mechanisms presented in Examples 4.5, 4.6 and
4.7 can achieve very strong approximation ratios. As we will see in Section 4.4, the mechanism
of Example 4.5 is actually the best possible among the restricted class of ordinal mechanisms;
later on, the use of cardinal information will allow us to decisively outperform it. We also note
that while the second-price auction in Example 4.7 is welfare-optimal for the agents, which is
a well-known fact, it can only provide a 2-approximation when it comes to our objective of the

combined welfare of the agents and the expert.

We continue with important conditions that are necessary and sufficient for BCh-IC and
ECh-IC. The next lemma is essentially the well-known characterization of [Myerson, 1981] for

single-parameter domains.
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Lemma 4.1 (Myerson, 1981). A mechanism M is BCh-IC if and only if the functions d™ and M are

non-increasing and non-decreasing in terms of their first argument, respectively.

The correct interpretation of the lemma is that, as long as the output of a mechanism satisfies
the monotonicity condition above, one can always find payments for the agents that will make
the mechanism BCh-IC. In fact, when the mechanisms are required to charge a payment of zero
to an agent with a zero bid, then these payments are uniquely defined, and are given by the

following formula
pi(wi, w—;) = w; - q;(wi, w—;) — / Z qi(t,w_;)dt,
0

where ¢; is the probability that agenti € { A, B} gets selected as the outcome, p; is the payment
function, w; is the bid of agent ¢ and w_; is the bid of the other agent. Therefore, we can avoid
referring to the payment function when designing our mechanisms, as we can choose the above
payment function, provided that the outcome probabilities satisfy the monotonicity conditions
of Lemma 4.1. On the other hand, our lower bounds apply to all mechanisms, regardless of the

payment function, as they only use the monotonicity condition.

Next, we provide a similar proof to that of Myerson [1981] for characterizing ECh-IC in our

setting.

Lemma 4.2. A mechanism M is ECh-IC if and only if the function ™ is non-decreasing in terms of

its first arqgument and the function g™ satisfies
9w ht.2) = MO0 - e bt + [Pl d @)
0
for every 4-tuple (x, h, ¢, z) representing a profile as seen by the expert.

As a corollary, functions g and h* are non-increasing in terms of the first argument.

Proof. To shorten notation, we use b = (h,/, z) as an abbreviation of the information in the
second row of a profile in expert’s view and (z, b) as an abbreviation of (x, h,/, z). Also, we
drop M from notation (hence, f(z,b) is used instead of fM(x, h,¢, 2)) since it is clear from
context. Due to ECh-IC, the expert has no incentive to attempt a level change of her utility for

her second favourite option from z to z’. This means that
g(x,b) +xf(2,b) > g(a’,b) + 2 f(a',b). (4.2)
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Similarly, she has no incentive to attempt a level change of her utility for her second favourite

option from z’ to x. This means that
g(x',b) +2'f(2',b) > g(x,b) + 2'f (2, b). (4.3)
By summing (4.2) and (4.3), we obtain that

((L‘ - .’E/)(f(l‘,b) - f(l‘/,b)) >0,
which implies that f is non-decreasing in terms of its first argument.

To prove equation (4.1), we observe that inequality (4.2) yields
g(z,b) + zf(z,b) > g(a',b) + 2" f(2',b) + (x — 2') (', b). (44)

This means that function g(z, b) + = f(z, b) is convex with respect to its first argument and has
f as its subgradient [Rockafellar, 2015]. Hence, from the standard results of convex analysis we

get

g(z,b) + zf(xz,b) = g(0,b) + /096 f(t,b)dt,

which is equivalent to (4.1). O

Before we conclude the section, we remark here that while Lemma 4.2 will be fundamental
for our proofs, it does not provide a characterization of all truthful one-voter mechanisms in the
unrestricted social choice setting (such mechanisms are referred to as unilateral in the literature).
The reason is that (a) it applies only to changes in the intensity of the preferences and not
swaps in the ordering of alternatives and (b) it only provides conditions for three alternatives,

as opposed to many alternatives in the general setting.
4.4 Ordinal mechanisms

We will consider several classes of truthful mechanisms depending on the level of information
that they use. Let us warm up with some easy results on ordinal mechanisms, which do not
use the exact values of the expert’s report and the bids but only their relative order. It turns out
that the best possible approximation ratio of such mechanisms is 3/2 and is achieved by two
symmetric mechanisms, one depending only on the ordinal information provided by the expert

(expert-ordinal), while the other depends only on the relation between the bids (bid-ordinal).

The expert-ordinal mechanism EOM selects the expert’s favourite and second best option
with probabilities 2/3 and 1/3, respectively. Symmetrically, the bid-ordinal mechanism BOM
selects the high- and low-bidder with probabilities 2/3 and 1/3, respectively.
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Theorem 4.3. Mechanisms EOM and BOM are truthful mechanisms that have approximation ratio at
most 3/2.

Proof. Mechanism EOM is clearly truthful for the agents since it ignores their bids. It is also
clearly truthful for the expert since the probabilities of selecting the options follow the order
of the expert’s valuations for them. BOM is clearly truthful for the expert (since her input is
ignored); truthfulness for the agents follows by observing that the probability of selecting an

agent is non-decreasing in terms of her bid.

We prove the approximation ratio for mechanism BOM only; the proof for the case of EOM

is completely symmetric. Consider the profile [ 8 ] in agents” view. We distinguish

1
between two cases. If 1 + h > y + ¢, the optimal welfare is 1 + h and the approximation ratio is

1+h
2(14+h)+3(y+9)

<

N W

sincey + ¢ > 0.If 1 + h < y + ¢, the optimal welfare is y + ¢ and the approximation ratio is

y+4 1
21+h)+3y+0 EHhgL

IN
| o

. O]

D=

; 1+h
since 7 >

We conclude this section by showing that both EOM and BOM are best possible among all

ordinal mechanismes.

Theorem 4.4. The approximation ratio of any ordinal mechanism is at least 3 /2.

Proof. Let e € (0,1/2) and consider the following two profiles:

leOandll—GO
0 ¢ 1 0 1—€¢ 1 /-

Since the order of the expert utilities and the bids is the same in both profiles, an ordinal
mechanism behaves identically in all these profiles for every € € (0,1/2). Assume that such a
mechanism selects the middle option with probability p. Then, the approximation ratio of this
mechanism is at least the maximum between its approximation ratio for these two profiles.

Considering all profiles for € € (0,1/2), we get an approximation ratio of at least

w { 1 2(1 — ¢) }max{ 12 }
66(0,52) l—p+2ep’ 1-p+2(1—¢€)p 1-p 14p)°
This is minimized to 3/2 for p = 1/3. O
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4.5 Bid-independent mechanisms

In this section, we consider cardinal mechanisms but restrict our attention to ones that ignore

the bids and base their decisions only on the expert’s report. It is convenient to use the expert’s
1 = 0
h ¢
univariate functions g™, fM

view of profiles . Then, a bid-independent mechanism can be thought of as using
, and n which indicate the probability of selecting the expert’s
first, second, and third favourite option when she has value = € [0, 1] for the second favourite
option. We drop M from notation since the mechanism will be clear from context. The next
lemma provides sufficient and necessary conditions for bid-independent mechanisms with

good approximation ratio.

Lemma 4.5. Let M be a bid-independent mechanism that uses functions g, f and n. Then M has

approximation ratio at most p if and only if the inequalities

29(w) + 2 (x) = 2/p (45)

g(x) + (1 +2)f(x) = (1+2z)/p (4.6)

hold for every x € [0, 1].

Proof. Consider the application of M on the profile ( }11 ;z 2 > If 1 +h > z + ¢ the optimal

welfare is 1 4+ h and the approximation ratio is

1+h < 1+h
0+ h)g(@) + @+ OF @) +en(@) — 0+ hg@) + @+ O @)
2
= 29(0) + 2of (@)’

The first inequality follows since z,7(z) > 0 and the second one follows since the expression

at the RHS is non-increasing in ¢ and non-decreasing in h. Then, the first inequality of the
statement follows as a sufficient condition so that M has approximation ratio at most p. To see
why it is also necessary, observe that the inequalities in the derivation above are tight for h = 1,

¢{=0,and z = 0.
If 1 + h < x + { the optimal welfare is 2 + ¢ and the approximation ratio is

T+ L < x4+ L
(L+h)g(z) + (x+O)f(z) +2n(x) — 1+ h)g(x) + (x + ) f(x)
1+
T g(a)+ (1 +a)f(z)

The first inequality follows since z,7(z) > 0 and the second one follows since the expression

at the RHS is non-increasing in ¢ and non-decreasing in h. Then, the second inequality of the
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statement follows as a sufficient condition so that M has approximation ratio at most p. To see
why it is also necessary, observe that the two inequalities in the derivation above are tight for

h=0,¢{=1,and z = 0. O

Truthfulness of bid-independent mechanisms in terms of the agents follows trivially (since
the bids are ignored). In order to guarantee truthfulness from the expert’s side, we will use
the characterization of ECh-IC from Lemma 4.2 together with additional conditions that will

guarantee ESw-IC. These are provided by the next lemma.

Lemma 4.6. An ECh-IC bid-independent mechanism is truthful if and only if the functions g, f, and n
it uses satisfy g(x) > f(x') and f(x) > n(a’) for every pair x,z’ € (0,1).

Proof. We first show that the first condition is necessary. Assume that the first condition is
violated, i.e., f(z1) > g(x2) for two points x1,z2 € (0,1). If 21 > x9, by the monotonicity of
g we have g(z1) < g(z2) and f(z1) > g(z1). Otherwise, by the monotonicity of f, we have
f(z2) > f(z1) and f(x2) > g(x2). In any case, there must exist z* € (0, 1) such that f(z*) >
g(z*). Now consider the swap from expert valuation profile (1,z*,0) to the profile (z*, 1,0).
The utility of the expert in the initial true profile is g(z*) 4+ z* f (2*) while her utility at the new
profile becomes f(z*) + 2*g(z*), which is strictly higher.

Now, we show that the second condition is necessary. Again, assuming that the second
condition is violated, we obtain that there is a point z* € (0, 1) such that n(z*) > f(z*). Now,
the swap from expert’s valuation profile (1, z*, 0) to the profile (1,0, z*) increases the utility of

the expert from g(z*) + 2* f(z*) to g(z*) + «*n(z*), which is again strictly higher.

To show that the condition is sufficient for ECh-IC, we need to distinguish between five

possible attempts for valuation swap by the expert.

Case 1. Consider the swap from the valuation profile (1, z,0) to the profile (1,0, z’). The utility
of the expert at the new profile is g(2’) + an(z’) < g(0) + [; f(t) dt = g(x) + x f(x), where the
inequality holds due to the fact that n(2’) < f(¢), for every ¢ € [0, z]. Observe that the RHS of

the derivation is the expert’s utility at the initial true profile.

Case 2. Consider the swap from the valuation profile (1, z,0) to the profile (2’, 1,0). The utility
of the expert at the new profileis f(z')+zg(2') < g(2')+xf(2') = g(a')+2' f(2')+(xz—2) f(2) <
g(x) + z f(x), which is her utility at the initial true profile. The first inequality follows by the

condition g(z’) > f(z) of the lemma and the second one is due to the convexity of function
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g(x) + x f(x). See also the proof of Lemma 4.2.

Case 3. Consider the swap from the valuation profile (1, z,0) to the profile (2’, 0, 1). The utility
of the expert at the new profile is f(z') + zn(z’), which is at most g(z) + zf(z) due to the

conditions of the lemma.

Case 4. Consider the swap from the valuation profile (1, z,0) to the profile (0, 2’, 1). The utility
of the expert at the new profile is n(z') + 2 f(2') < f(x) + zg(x) < g(z) + zf(x), which is her

utility at the initial true profile.

Case 5. Consider the swap from the valuation profile (1, z,0) to the profile (0, 1, z’). The utility
of the expert at the new profile is n(z') + zg(z’) < f(2') + zg(z) and the proof proceeds as in
Case 2 above. O]

We are now ready to propose our mechanism BIM. Let 7 = —W (—4 ), where W is the
Lambert function, i.e., 7 is the solution of the equation 27 = ¢ ~!. Mechanism BIM is defined

as follows:

1471
) € [0, 7]
g(CC) - %ing x)el ==
{ : 1++3)‘r ’ [T’ 1]

T
77('7’.) = {%:ri_(glq——’xelz)
i3
BIM is depicted in Figure 4.1. All functions are constant in [0, 7] and have (admittedly,
counter-intuitive at first glance) exponential terms in [, 1]. Interestingly, as we will show later,
this is the unique best possible bid-independent truthful mechanism. Its properties are proved

in the next statement.

Theorem 4.7. Mechanism BIM is truthful and has approximation ratio at most

1—3W (—%) N
W ~~ 1.376577

where W is the Lambert function.
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0
0 x 1

Figure 4.1: The lottery used by mechanism BIM.

Proof. Tedious calculations can verify that BIM is truthful. The function f is non-decreasing in
x and g is defined exactly as in equation (4.1); hence, ECh-IC follows by Lemma 4.2. ESw-IC

follows since f, g, and h satisfy the conditions of Lemma 4.6.

Now, let p = 1113:. We use the definition of BIM and Lemma 4.5 to show the bound on the

approximation ratio. If z € [0, 7], inequalities (4.5) and (4.6) are clearly satisfied since x > 0 and

x < 7, respectively. If z € [, 1], we have

2a(1 + z)el = 1+a—2ael™®
T
1+ 3« 1+ 3«

29(x) + xf(z) =2

)

which is minimized for x = 7 (recall that 27 = 7~ !) at 24“1%:75;72 > 2/p. Hence, inequality (4.5)
holds. Also, inequality (4.6) can be easily seen to hold with equality. O

We now show that BIM is optimal among all bid-independent truthful mechanisms. The
proof of the next theorem exploits the characterization of ECh-IC mechanisms from Lemma
4.2, the characterization of ESw-IC bid-independent mechanisms from Lemma 4.6, and Lemma

4.5.

Theorem 4.8. The approximation ratio of any truthful bid-independent mechanism is at least

1-3W (—%)

~ 1.37657,
1=W(=3)

where W is the Lambert function.

Proof. Let M be a bid-independent mechanism that uses functions g, f, and h to define
the probability of selecting the expert’s first, second, and third favourite option and has

approximation ratio p > 1. By the necessary condition (4.1) for ECh-IC in Lemma 4.2, we know
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that

g(@) = 9(0) — 2/ (x /f (4.7)
Let « be any value in [0, 1].

Due to the fact that f(1) + g(1) < 1, we have

1
n /0 F(t)dt < 1. (4.8)

By the necessary condition for ESw-IC in Lemma 4.6 and since g is non-increasing (by Lemma

4.2), we also have f(z) > n(z) =1— f(z) — g(x) > 1 — f(x) — g(0), i.e, g(0) + 2f(z) > 1, for
x € (0,1). Integrating in the interval (0, o], we get

0) +2 / F(t)dt > a. (4.9)
0
Since, the mechanism is p-approximate, Lemma 4.5 yields

9(0) > 1/p (4.10)
(by applying inequality (4.5) with x = 0) and
g(@) + (1 +2)f(z) = (1 +x)/p, Ve € [a, 1].
Using (4.7), this last inequality becomes

g9(0) + f(z /f )dt > (1+xz)/p,Vx € [a,1].

Now, let A be a continuous function with A\(z) < f(z) in [, 1] such that

+/0 f(t)dt+/¢y At)dt + Xzx) = (1 +x)/p.

Setting A(z) = [ A(t)dt (clearly, A is differentiable due to the continuity of A in [0, 1]), we get

the differential equation

/f (t)dt + Ax) + N(z) = (1+2)/p

which, given that A(a) = 0, has the solution

Az) = % = 900 /f dt+< —+/f dt>exp(a—x)

for x € [a, 1]. Hence,
/f Jde > A1) = L0 1—(1—661—1)9(0 (1— e /f (4.11)
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Now, by multiplying inequalities (4.8), (4.9), (4.10), and (4.11) by coefficients 2, e*~!, (2 —

«

a)e 1, and 2, respectively, and then summing them, we obtain

S 2 — e 1
p= 2 — 3aed~1 4 2ea-1"

Picking o = —W (—5) (i.e., a is the solution of the equation e®~! = 2qa), we get that

This completes the proof. O
4.6 Expert-independent mechanisms

Here, we consider mechanisms that depend only on the bids. Now, it is convenient to use the
¢ n

0
aM M

agents’ view of profiles [ }1L . Then, an expert-independent mechanism can be thought

of as using univariate functions , and eM which indicate the probability of selecting the
high-bidder, the low-bidder, and the option © in terms of the normalized low-bid y. Again,
we drop M from notation. Following the same roadmap as in the previous section, the next
lemma provides sufficient and necessary conditions for expert-independent mechanisms with

good approximation ratio.

Lemma 4.9. Let M be an expert-independent mechanism that uses functions d, ¢, and e with d(y) =

1 —c(y)and e(y) =0 fory € [0,1]. If

L1t 201/ 41

p Y 2—y

for every y € [0, 1], then M has approximation ratio at most p. Condition (4.12) is necessary for every

p-approximate expert-independent mechanism.

Proof. Consider the application of M on the profile [ }11 5 g

cases. If 1 + h > y + £, assuming that condition (4.12) is true, the approximation ratio of M is

} . We distinguish between two

1+h B 1
(y+0cly) + A+h) A —cly)  Lley) +1-cly)
1
<

=1 —y/2e) ="

The first inequality follows since % > y/2when y € [0, 1], while the second one is essentially

the right inequality in condition (4.12).
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00 Y 1

Figure 4.2: A pictorial view of the statement in Lemma 4.9.

Otherwise, if 1 + h < y + ¢, the approximation ratio of M is

y+4 B 1
W+ 0cy) + (T+h) (A —cly)) ey + 251 - c(y))
1+y
< ———<p.
STyl
The first inequality follows since ;*TZ > ﬁ when y € [0, 1]; again, the second one is essentially

the left inequality in condition (4.12).

To see that condition (4.12) is necessary for every mechanism, first consider a mechanism

M’ that uses functions ¢, d, and e such that the function ¢ violates the left inequality in (4.12),

1

ie, c(y*) < i 12}# for some y* € [0, 1]. Then, using this inequality and the fact that d(y*) <

1 —¢(y*), the approximation ratio of M’ at profile [ (1) yl* 8 ] is

y +1 1+y*
3 Z * (0% >
(y* + e(y*) +d(y*) — 1+yely)

Now, assume that function ¢ violates the right inequality in (4.12), i.e., ¢(y*) > 2(5:7;@. Then,
using this inequality and the fact that d(y*) < 1—¢(y*), the approximation ratio of M at profile
1 0 0.
I
2 2
7 = 2 * )7 (g%
2d(y*) +yre(yr) — 2- (2 y)ely”)

as desired. O

> p

Figure 4.2 shows the available space (grey area) for the definition of function ¢(y), so that
the corresponding mechanism has an approximation ratio of at most p = 7 — 41/2. It can be
easily verified that this is the minimum value for which the LHS of condition (4.12) in Lemma

4.9 is smaller than or equal to the RHS so that a function satisfying (4.12) does exist.
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Our aim now is to define an expert-independent truthful mechanism achieving the best
possible approximation ratio of p = 7 — 41/2. Since the expert’s report is ignored, truthfulness
for the expert follows trivially. We restrict our attention to the design of a mechanism that never
selects option @, i.e., it has d(y) = 1 — c(y) for every y € [0,1]. Lemmas 4.1 and 4.9 guide this
design as follows. In order to be BCh-IC and p-approximate, our mechanism should use a non-
decreasing function ¢(y) in the space available by condition (4.12). Still, we need to guarantee

BSw-IC; the next lemma gives us the additional sufficient (and necessary) condition.

Lemma 4.10. A BCh-IC expert-independent mechanism is truthful if and only if d(1) > ¢(1).

Proof. Consider an attempted bid swap according to which the low-bidder increases her
normalized bid of y so that it becomes the high-bidder and the normalized bid of the other

agent is y'. Essentially, this attempted bid swap modifies the initial profile [ }f 5 g ] to
¢t h n
1 ¢ 0

has probability ¢(y) of being selected. In the new profile, she corresponds to the first column,

] . The deviating agent corresponds to the middle column in the initial profile and

and has probability d(y’) of being selected. So, the necessary and sufficient condition so that
BSw-IC is guaranteed is ¢(y) < d(y’) for every y,y' € [0, 1]. Since, by Lemma 4.1, ¢ and d are

non-decreasing and non-increasing, respectively, this condition boils down to d(1) > ¢(1).

The case in which the high-bidder decreases her bid so that it gets a normalized value of 3’

is symmetric. O
We are ready to propose our mechanism EIM, which uses functions
2(1-1/p) 3—p
== yel[0,58]
c(y) = { > y 3— ?

forp=7—4v2and d(y) = 1 — c(y) fory € [0,1].

Essentially, EIM uses the blue line in the upper right plot of Figure 4.2, which consists of
the curve that upper bounds the grey area up to point 3% = 21/2 — 2 and the curve that lower-
bounds the grey area after that point. The properties of mechanism EIM are summarized in the
next statement. It should be clear though that the statement holds for every mechanism that
uses a non-decreasing function in the grey area that is below 1/2 (together with the restriction
d(y) = 1 — ¢(y), this is necessary and sufficient for BSw-IC). Given the discussion about the
optimality of p = 7 — 41/2 above, all these mechanisms are optimal within the class of expert-

independent mechanisms.
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Theorem 4.11. Mechanism EIM is truthful and has approximation ratio at most 7 — 44/2 ~ 1.3431.

This ratio is optimal among all truthful expert-independent mechanisms.
4.7 Beyond expert-independent mechanisms

In this section, we present a template for the design of better truthful mechanisms, compared
to those presented in the previous sections. The template strengthens expert-independent
mechanisms by exploiting a single additional bit of information that allows to distinguish

between profiles that have the same (normalized) bid values.

We denote by 7 the set of mechanisms that are produced according to our template. In
order to define a mechanism M € 7T, it is convenient to use the agents” view of a profile
as [ fll 5 1(; ] We partition the profiles of D into two categories. Category 7’1 contains all
profiles with ¢ > h or with ¢/ = h such that the tie between the expert valuations ¢ and h is

resolved in favour of the low-bidder. All other profiles belong to category 72.

For each profile in category 7T'1, mechanism M selects the low-bidder with probability
c(y,T1) that is non-decreasing in y and the high-bidder with probability 1 — ¢(y, T'1). For each
profile in category 72, mechanism M selects the low-bidder with probability 0, and the high-
bidder with probability 1. Different mechanisms following our template are defined using
different functions ¢(y, T'1). The mechanisms of the template ignore neither the bids nor the

expert’s report; still, it is not hard to show that they are truthful.

Lemma 4.12. Every mechanism M € T is truthful.

Proof. We first show that M is truthful for the agents. BCh-IC follows easily by Lemma 4.1,
since ¢(y,T'1) and ¢(y,T2) are non-decreasing in y. To show BSw-IC, notice that a bid swap
attempt in a profile of category 71 yields a profile of category 72, and vice versa. This involves
either a high-bidder who decreases her bid to become the low-bidder in the new profile, or
the low-bidder who increases her bid to become the high-bidder in the new profile. In both
cases, the increase or decrease in the selection probability according to M follows the increase

or decrease of the deviating bid.

To show that M is truthful for the expert, first observe that according to the expert’s view,
the lottery uses constant functions f, g, and h in terms of her valuation for her second favourite
option. Hence, Lemma 4.2 implies ECh-IC. To show ESw-IC, observe again that an expert’s

report swap attempt from a profile of category 7’1 creates a profile of category 72 and vice versa.
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The expected utility that M yields to the expert in the initial profileis ¢c(y, T1)+h(1—c(y, T1)) =
h+(l—h)c(y,T1) > hifitis of category T'1 and h+({—h)c(y, T2) = hifitis of category 72. After
the deviation, the utility of the expert becomes lc(y, T'1)+h(1—c(y,T1)) = h+({—h)c(y,T1) < h
if the new profile is of category T'1 and h + (¢ — h)c(y,T2) = h if it is of category 7'2. Hence,

such a swap attempt is never profitable for the expert. O

The next lemma is useful for proving bounds on the approximation ratio of mechanisms in

the template class 7.

Lemma 4.13. Let M be a mechanism of T and p > 1 be such that the function c(y,T1) used by M

satisfies

Lo12Ve ooy < 1210

p y l—y
Then, M has approximation ratio at most p.

Proof. Clearly, the approximation ratio of M in profiles of category T2 is always 1 since the

mechanism takes the optimal decision of selecting the high-bidder with probability 1.

{ n

1 vy O
two cases. If 1 + h > y + ¢, then the approximation ratio of M is

1+h 1

(y+0cly, T+ (L + 7)1 —c(y, T1) ~ 1— c(y,T1) + Lc(y, T1)
1

= 1= (= g)ely, TT)

Now, consider a profile [ } of category 11, i.e.,, { > h. We distinguish between

<p.

The first inequality follows since % > ywheny € [0,1] and ¢ > h > 0 while the second one

is due to the right inequality in the condition of the lemma.

Otherwise, if 1 + h < y + ¢, the approximation ratio of M is
y+4 1

(y + g)c<y7 Tl) + (1 + h‘)(l - C(y, Tl)) C(yv T]-) + TTZ(]- - C(y7 Tl))
1+y

S - <
1+ ye(y, T1)

<»p.

The first inequality follows since ;FT}Z > ﬁ wheny € [0,1] and h > ¢ > 0; again, the second
one is due to the left inequality in the condition of the lemma. O

The conditions of Lemma 4.13 are depicted in the two plots of Figure 4.3 (for p = 5/4 and
p = ¢, respectively). The grey area represents the available space for the definition of the (non-
decreasing) function c(y,7'1) that a mechanism of 7 should use on profiles of category 7'1 so

that its approximation ratio is at most p.
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Figure 4.3: Pictorial views of the statement in Lemma 4.13 for p = 5/4 (left) and p = ¢ (right).

These plots explain the definition of the next two mechanisms that follow our template: the
randomized mechanism R and the deterministic mechanism D. For each profile of category

T1, mechanism R uses

cR(y T1) = ﬁ> y € [0,4/5]
’ 1, y € [4/5,1]

(i.e., the blue line in the lower left plot of Figure 4.2) and mechanism D uses

RN (R
w1 {1, yel1/6,1]

(i.e., the blue line in the lower right plot of Figure 4.2), where ¢ = % ~ 1.618 is the golden

ratio. Their properties are as follows.

Theorem 4.14. Mechanisms R and D are 5/4- and ¢p-approximate truthful mechanisms, respectively.

Proof. Since R, D € T, truthfulness follows by Lemma 4.12. Their approximation ratios follow

by Lemma 4.13 for p = 5/4 and p = ¢, respectively. O

We remark that the condition of Lemma 4.13 can be proved to be not only sufficient but also
necessary for achieving a p-approximation. Then, it can be easily seen that the value of 5/4 is
the lowest value for which the condition of the lemma is feasible. Hence, mechanism R is best
possible among mechanisms that use our template. More interestingly, 5/4 turns out to be the
lower bound of any mechanism that always sells the item, as we prove in the next theorem.
Mechanism D will be proved to be optimal among all deterministic truthful mechanisms in the

next section.

Theorem 4.15. The approximation ratio of any mechanism that always sells the item is at least 5 /4.
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{ n
1 y O
always-sell mechanism. Then, M can be thought of as using functions d(y, h, ¢,n), c(y, h, ¢, n)

Proof. Consider preference profiles in agents” view [ ], and let M be any truthful

and e(y, h, ¢, n) to assign probabilities to the high-bidder, the low-bidder and the no-sale option,
respectively, such that d(y, h,¢,n) =1 — c(y, h,£,n) and e(y, h, ¢,n) = 0.

Since M is truthful for the expert, the expert does not have any incentive to misreport her

valuations from (h,¢,n) to (k', ¢, n'), for any ¢ > h and ¢’ > h’. This means that
h-(1—=c(y,h,t,n))+L-cly,h,t,n) >h-(1—c(y, W, 0 ,n"))+£€-cly,h', 0/ ,n)
or, equivalently, since ¢ > h,
c(y,h,l,n) > c(y, ., n/) (4.13)

Similarly, the expert does not have incentive to misreport her valuations from (h’, ¢, n’) to

(h,¢,n), for any ¢ > h and ¢' > h'. This gives us that
(1 —c(y, W, 00" ))+ 0 -c(y, b, €/ ,n') > K - (1 —c(y,h,l,n)) + £ -c(y,h,£,n)
or, equivalently, since ¢/ > I/,

c(y, W, 0',n') > c(y, h,l,n) (4.14)

Therefore, by (4.13) and (4.14), we have that c(y, h, £, n) is constant in all profiles [ }f 5 g ]

with £ > h.
Now, let € € (0,1/2) and consider the following two profiles:
0 1 0 and 0 € 1
1 1/2 0 1 1/2 0
Since ¢ > h in both profiles, any truthful mechanism M that always sells the item behaves
identically in all such profiles, for any ¢ € (0,1/2). Hence, assume that such a mechanism M
selects the low-bidder with probability p (and the high-bidder with probability 1 — p). Then, the

approximation ratio of M is at least the maximum between its approximation ratio for these

profiles, i.e.,

P : : = max{ 3 2 }
1/ | 1=p+5p 1=p+(c+3)p 2+p 2—pJ"
This is minimized to 5/4 for p = 2/5. -
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4.8 Unconditional lower bounds

In the previous sections, we presented (or informally discussed) lower bounds on the
approximation ratio of truthful mechanisms belonging to particular classes. Here, we present
our most general lower bound that holds for every truthful mechanism. The proof exploits the

ECh-IC characterization from Lemma 4.2.

Theorem 4.16. The approximation ratio of any truthful mechanism is at least 1.14078.

Proof. Let~ € [0,1] be such that 1 — 2y — 4% — 29 = 0 and 8 = (1 + ) ~!. The corresponding
values are § ~ 0.7709 and v ~ 0.29716.

Consider any p-approximate truthful mechanism and the profiles

1 580 1 00
(7 1 0>and<7 1 0).

Since the bids are identical in both profiles, we can assume that the functions f and ¢ are
univariate (depending only on the expert’s second highest utility). Since the mechanism is p-

approximate in both profiles, we have

1+

(L+7)g(B) + 1+ B)f(B) = —, (4.15)

and

(1+7)g(0) + £(0) > ”p” (.16)

By condition (4.1) in Lemma 4.2, g(x) = g(0) — z.f(z) + [, f(t) dt which, due to the fact that f
is non-decreasing (again by Lemma 4.2), yields fo t)dt > 5£(0). Hence,

g9(x) = g(0) — Bf(B) + Bf(0). (4.17)

Also, clearly,
1>9(8) + f(B). (4.18)

Now, multiplying inequalities (4.15), (4.16), (4.17), and (4.18) by the coefficients
=y (B=)(+) nq _B+)

ol
B+28y—7"

and by summing them, we get

B+2B7—2" B+2By—2" B+2By—2"
B+28y -+
— B(l+7)
Substituting 8 and v, we obtain that p > 1.14078 as desired. O
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Our last statement shows that mechanism D, which was presented in Section 4.7, is optimal

among all deterministic truthful mechanisms.

Theorem 4.17. No truthful deterministic mechanism has approximation ratio better than ¢.

Proof. Let M be a deterministic truthful mechanism. Consider a profile ( ]11 jg
combination of values for h, ¢, and z. We first show that M selects the same option for every

0 >
for some
z

value of z € (0,1). Indeed, assume otherwise; due to Lemma 4.2, f must be non-decreasing
in = and, hence, f(z1,h,¢,z) = 0 and f(x2,h,¥¢,z) = 1 for two different values x; and x5 in
(0,1) with z1 < z2. Let z3 € (22,1), i.e., f(x3, h, ¥, z) = 1 due to monotonicity. Property (4.1) in

Lemma 4.2 requires that
g(zs,h,l,z) = g(0,h, 0, z) —x3 + /013 f(t,h,t, z)dt.
By our assumptions on f (and due to its monotonicity), we also have that
T3 — 29 < /ng f(t,h,l,z)dt < xg — x1.

These last two (in)equalities imply that g(0, h, ¢, z) — g(x3, h, ¢, z) lies between x2 and z3, i.e., it

is non-integer. This contradicts the fact that M is deterministic.

Now let € > 0 be negligibly small and consider the two profiles

1 1—-¢ 0 1 ¢/¢* 0
<0 1/¢ 1>and<0 1/¢ 1>'
If M selects the low-bidder in both profiles, its approximation ratio at the right one is m >
¢ — e. Otherwise, its approximation ratio at the left profile is 1 + 1/¢ — €. In any case, the

approximation ratio is at least ¢ — ¢, and the proof is complete. O

Of course, Theorem 4.17 is meaningful for cardinal mechanisms. Deterministic ordinal

mechanisms can be easily seen to be at least 2-approximate.
4.9 Conclusion

In this chapter we focused on designing truthful mechanisms for a simple ownership transfer
scenario with two agents and one expert. The agents have monetary values for an item that
is up for sale, while the expert has values over the different options of selling to some agent
or not selling at all. The goal was to design mechanisms to incentivize all parties to truthfully
report their values, while at the same time maximize the social welfare that takes into account

the values of the agents and the expert for the outcome.
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We considered several different classes of truthful mechanisms depending on the level of
information that they used. For each such class, we identified the best possible mechanism
in terms of the approximation ratio of the optimal social welfare. Indicatively, we showed an
unconditional lower bound of 1.14 on the approximation ratio of all mechanisms, and designed
a particular randomized mechanism with approximation ratio of 1.25, that uses the cardinal
information provided by the agents as well as a single extra bit of information by the expert

that allows for a classification of the possible valuation profiles.
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Chapter 5

Near-optimal asymmetric binary matrix
partitions

In this chapter, we study the asymmetric binary matrix partition problem and design simple
algorithms with improved approximation guarantees; for a short introduction to the problem
and possible applications for revenue maximization in take-it-or-leave-it sales by exploiting
information asymmetry see the discussion in Section 1.4. The results that we present here have

been published in [Abed et al., 2018].
5.1 Problem definition and overview of contribution

Consider an n x m matrix A with non-negative entries and a probability distribution p over
its columns; p; denotes the probability associated with column j. We distinguish between
two cases for the probability distribution over the columns of the given matrix, depending
on whether it is uniform or non-uniform. A partition scheme B = (Bj, ..., B,) for matrix A
consists of a partition B; of [m] for each row i of A. More specifically, B; is a collection of k;
pairwise disjoint subsets B;;, C [m] (with 1 < k < k;) such that Ul,zizl B, = [m]. We can think of
each partition B; as a smoothing operator, which acts on the entries of row ¢ and changes their
value to the expected value of the partition subset they belong to. Formally, the smooth value of

an entry (i, j) such that j € By, is defined as

ZEEBM be - Agp

AB —
v]
ZEeBik Pe

(5.1)

Notice that all entries (i, j) such that j € B;; have the same smooth value. Given a scheme B

that induces the smooth matrix AP, the resulting partition value is the expected maximum column
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entry of AB, namely,
vP(A,p) =D pj - max AP (5.2)
j€lm]
The objective of the asymmetric binary matrix partition problem is to find a partition scheme B

such that the resulting partition value v” (A4, p) is maximized.

The problem was first introduced by Alon et al. [2013] who proved it to be APX-hard even
for input matrices containing binary values and uniform probability distributions. Further, for
the binary version, they presented a 0.563- and a 1/13-approximation algorithms for the cases
where the probability distribution over the columns of the input matrix is uniform and non-
uniform, respectively. We significantly improve both of these results, by designing a 9/10-
approximation algorithm for the uniform case and a (1 — 1/e)-approximation algorithm for

non-uniform distributions.

For the uniform case, the algorithm of Alon et al. [2013] use several interesting phases. We
borrow two of them, namely a covering and a greedy completion phase, which we put together
into an intuitive greedy algorithm. Despite the purely combinatorial nature of this algorithm,
to analyze it and prove its approximation ratio, we exploit linear programming techniques and

duality.

For non-uniform distributions, we exploit a nice relation of asymmetric matrix partition to
submodular welfare maximization, and use well-known algorithms from the literature. First,
we discuss the application of a simple greedy 1/2-approximation algorithm that has been
studied by Lehmann et al. [2006]. Then, we apply the smooth greedy algorithm of Vondrak
[2008] to achieve a (1 — 1/e)-approximation for our problem, which is optimal in the value
query model due to Khot et al. [2008]. In a more powerful model where it is assumed that
demand queries can be answered efficiently, Feige and Vondrak [2010] proved that (1—1/e+¢)-
approximation algorithms are possible, where ¢ is a small positive constant. We briefly discuss
the possibility /difficulty of applying such algorithms to asymmetric binary matrix partition

and observe that the corresponding demand query problems are, in general, NP-hard.
51.1 Chapter roadmap

In the following, shortly discuss other related work in Section 5.2. Then, we give preliminary
definitions and examples, and prove several important structural observations in Section 5.3.
We present our 9/10-approximation algorithm for the case where the probability distribution

over the columns of the matrix is uniform in Section 5.4. Our (1—1/e)-approximation algorithm
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for the non-uniform case is analyzed in Section 5.5. We conclude with a short synopsis in

Section 5.6.

5.2 Related work

Apart from the binary version of the asymmetric matrix partition problem, Alon et al. [2013]
considered also the more general case of input matrices with non-binary entries, for which they
presented a 1/2- and an Q(1/logm)-approximation algorithm for uniform and non-uniform
distributions, respectively. A common idea underlying these results is that they try to identify
a set of high-value entries that can be bundled together with other entries in order to increase

the total contribution.

The possible application of asymmetric matrix partition to revenue maximization in take-
it-or-leave-it sales (see Section 1.4) falls within the line of research that studies the impact of
information asymmetry to the quality of markets. Akerlof [1970] was the first to introduce a
formal analysis of the markets for lemons, where the seller has much more accurate information

than the buyers regarding the quality of the products.

The particular approach of partitioning in take-it-or-leave-it sales is closer in spirit to the
strategic information transmission that was initiated in the work of Crawford and Sobel [1982],
where the seller has information about the valuations of the buyers, and strategically aims to
exploit this advantage in order to maximize her revenue. In order for such an approach to work,
an additional constraint is that the potential buyers need to be unaware of each other as well
as of details of the underlying mechanism which could be used to extract information about
the quality of the items. If this not possible, then the linkage principle of Milgrom and Weber
[1982] suggests that the seller should reveal all possible information to the buyers in order to

maximize her revenue.

Levin and Milgrom [2010] as well as Milgrom [2010] suggest that careful bundling of the
items is the best way to exploit information asymmetry. Many different frameworks that reveal
different kinds of information to the bidders have been proposed in the literature over the years.
For instance, Ghosh et al. [2007] considered full information and proposed a clustering scheme
according to which, the items are partitioned into bundles and, then, for each such bundle, a
separate second-price auction takes place. This way, the potential buyers cannot bid only for the
items that they actually want, but have to also compete for items that they do not value much.

Hence, the demand for each item is increased and the revenue of the seller gets increased. Emek
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et al. [2012] and Dughmi [2014] presented several complexity results in similar settings, while

Miltersen and Sheffet [2012] considered fractional bundling schemes for signaling.

Finally, it is worth mentioning that exploiting linear programming for the analysis of purely
combinatorial algorithms, like we did in Section 5.4, is a now well-established technique that
has already been used in many different settings, such as facility location [Jain et al., 2003],
variants of set cover [Athanassopoulos et al., 2009a,b, Caragiannis et al., 2013], online matching
[Mahdian and Yan, 2011], maximum directed cut [Feige and Jozeph, 2015], and wavelength
routing [Caragiannis, 2009].

5.3 Definitions, examples and structural observations

An algorithm for the asymmetric matrix partition that computes a partition scheme with value
that is at least p € [0, 1] times the partition value of the best possible partition scheme is called
a p-approximation algorithm. Henceforth, we focus our attention on the case where the input

matrix A consists only of binary values.

Let AT = {j € [m] : there exists a row i such that 4;; = 1} denote the set of columns of A
that contain at least one 1-value entry, and A° = [m]\ A" denote the set of columns of A that
contain only 0-value entries. In the next sections, we usually refer to the sets A" and A? as the
sets of one-columns and zero-columns, respectively. Furthermore, let A = {j € [m] : 4;; = 1}
and A = {j € [m] : A;; = 0} denote the sets of columns that intersect with row i at a 1- and 0-
value entry, respectively. All columns in 4; are one-columns and, furthermore, A* = U, A}.
The columns of A? can be either one- or zero-columns and, thus, A° C U?_; AY. Also, denote

by r = 3_;c 4+ p; the total probability of the one-columns. As an example, consider the 3 x 6

matrix
01 1010
A=101 1 01 0
01 1000

and a uniform probability distribution over its columns. We have At = {2,3,5} and A° =
{1,4,6}. In the first two rows, the sets A;" and A? are identical to A" and A°, respectively. In
the third row, the sets A and A3 are {2,3} and {1, 4, 5, 6}. Finally, the total probability of the

one-columns r is 1/2.

A partition scheme B can be thought of as consisting of n partitions By, By, ..., By, of the
set of columns [m|. We use the term bundle to refer to the elements of a partition B;; a bundle

is just a non-empty set of columns. For a bundle b of partition B; corresponding to row i, we
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say that b is an all-zero bundle if b C AY and an all-one bundle if b C A. A singleton all-one
bundle of partition B; is called column-covering bundle in row i. A bundle that is neither all-zero
nor all-one is called mixed. A mixed bundle corresponds to a set of columns that intersects with

row ¢ at both 1- and 0-value entries.

Let us examine the following partition scheme B for matrix A that defines the smooth matrix

AP according to equation (5.1).

T I y ig ig 1{2 1(/)2 1{2 1(/)2

B, | {1,2}, {3}, {46}, {5} 0 [2/3/2/3| 0 |2/3] 0
By | {1,4,6},{2,3,5} max; AP [ 1/2[2/3] 1 [1/2] 1 |12

Here, the bundle {1, 2, 3,4} of (the partition B; of) the first row is a mixed one. The bundle
{3} of By is all-one and, in particular, column-covering in row 2. The bundle {1, 4,6} of B3 is

all-zero.

By equation (5.2), the partition value is 25/36 and it can be further improved. First, observe
that the leftmost zero-column is included in two mixed bundles (in the first two rows). Also, the
mixed bundle in the third row contains a one-column that has been covered through a column-
covering bundle in the second row and intersects with the third row at a 0-value entry. Let us

modify these two bundles.

0 [2/3]2/3]2/3]1/2]1/2

Bl | {1},{2,3,4}, {5.6} A8 |12 1?2 { é { é

By | {1,2}, {3}, {4,6}, {5} o[ 1|1 |0]01]oO0
/

By | {1,4,5,6},{2,3} max; AP [ 1/2] 1 [ 1 [2/3] 1 [1)2

The partition value becomes 7/9 > 25/36. Now, by merging the two mixed bundles {2, 3,4}
and {5, 6} in the first row, we obtain the smooth matrix below with partition value 47/60 > 7/9.
Observe that the contribution of column 4 to the partition value decreases but, overall, we have
an increase in the partition value due to the increase in the contribution of column 6. Actually,

such merges never decrease the partition value (see Lemma 5.1 below).

0 [3/5]3/5|3/5]3/5]3/5
By ) (254,56 AB" 1 1)2 1?2 { é { é
BY | {1,2}, {3}, {4,6}, {5} 0 | X o e
"
Bil 11,4.5.6)423) max; AP [1/2] 1 | 1 |3/5] 1 |35

Finally, by merging the bundles {1, 2} and {3} in the second row and decomposing the bundle

{2, 3} in the last row into two singletons, the partition value becomes 73/90 > 47/60 which can
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be verified to be optimal.

0 [3/5]3/5|3/5|3/5]3/5
Bi,/ {1}/ {273747576} AB”’ 2/3 2?3 2?3 (/] { (/)
By' | {1,2,3}, {4,6}, {5} 0 1 1 0 0 0
Bé” {1, 4,5, 6}, {2}, {3} max, AZ” 2/3 1 1 3/5 1 3/5
i g

We will now give some more definitions that will be useful in the following. We say that
a one-column j is covered by a partition scheme B if there is at least one row i in which {j}
is column-covering. For example, in B”, the singleton {5} is a column-covering bundle in the
second row and the singletons {2} and {3} are column-covering in the third row. We say that
a partition scheme fully covers the set A™ of one-columns if all of them are covered. In this case,
we use the term full cover to refer to the pairs of indices (i, j) of the 1-value entries A;; such that
{j} is a column-covering bundle in row i. For example, the partition scheme B" has the full

cover (2,5),(3,2), (3, 3).

It turns out that optimal partition schemes always have a special structure like the one of

B". Alon et al. [2013] formalized observations like the above into the following statement.

Lemma 5.1 (Alon et al. [2013]). Given a uniform instance of the asymmetric binary matrix partition

problem with a matrix A, there is an optimal partition scheme B with the following properties:
P1. B fully covers the set A™ of one-columns.

P2. For each row i, B; has at most one bundle containing all columns of A that are not included in
column-covering bundles in row i (if any). This bundle can be either all-one (if it does not contain

zero-columns) or the unique mixed bundle of row 1.

P3. For each zero-column j, there exists at most one row i such that j is contained in the mixed bundle

of B; (and j is contained in the all-zero bundles of the remaining rows).

P4. For each row 1, the zero-columns that are not contained in the mixed bundle of B; form an all-zero

bundle.

Properties P1 and P3 imply that we can think of the partition value as the sum of the
contributions of the column-covering bundles and the contributions of the zero-columns in
mixed bundles. Property P2 comes from the following more general statement that has been
proved by Alon et al. [2013]; we give an alternative more direct proof here using Milne
inequality [Hardy et al., 1934, page 61]. Lemma 5.2 will be very useful several times in our

analysis in both the uniform and the non-uniform case.
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Lemma 5.2 (Alon et al. [2013]). Consider t > 2 mixed bundles. For i = 1,...,t, bundle i contains
1-value entries of total probability x; and zero-columns of probability y;. The total contribution of the
zero-columns in these mixed bundles to the partition value is upper bounded by the contribution of
zero-columns of probability S '_ y; that form a single mixed bundle together with 1-value entries of
probability ' ;.

Ty

o and the contribution of its
i TYi

Proof. By the definitions, the smooth value of the i-th bundle is

zero-columns to the the partition value is % The proof follows by Milne inequality which

states that
t

Z TiYi < Zzzl T - 2521 Yi

— t t b
ST Y Y it Y i Vi

where the right-hand side expression is the contribution of the zero-columns in the partition

value of the single mixed bundle. O

Now, property P2 should be apparent; the columns of A; that do not form column-covering
bundles in row i are bundled together with zero-columns (if possible) in order to increase the
contribution of the latter to the partition value. Property P4 makes B consistent to the definition
of a partition scheme where the disjoint union of all the partition subsets in a row should be
[m]. Clearly, the contribution of the all-zero bundles to the partition value is 0. Also, the non-

column-covering all-one bundles do not contribute to the partition value either.

Unfortunately, as we will see later in Section 5.5, Lemma 5.1 does not hold for non-uniform
instances. This is due only to property P1 which requires a uniform probability distribution
over columns. Luckily, it turns out that non-uniform instances also exhibit some structure
(recall that the crucial Lemma 5.2 applies to the non-uniform case as well), which allows us
to consider the problem of computing an optimal partition scheme as a welfare maximization
problem. In welfare maximization, there are m items and n agents; agent 7 has a valuation
function v; : 2" — R that specifies her value for each subset of the items. Le., for a set S
of items, v;(.S) represents the value of agent i for S. Given a disjoint partition (or allocation)
S = (51,52, ...,5,) of the items to the agents, where S; denotes the set of items allocated to
agent i, the social welfare is the sum of values of the agents for the sets of items allocated
to them, ie,, SW(S) = >, v;(S;). The term welfare maximization refers to the problem of
computing an allocation of maximum social welfare. We will discuss only the variant of the
problem where the valuations are monotone and submodular; following the literature, we use

the term submodular welfare maximization to refer to it.
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Definition 5.1. A valuation function v is monotone if v(.S) < v(T") for any pair of sets S, T such
that S C T'. A valuation function v is submodular if v(S U {z}) — v(S) > v(T'U{z}) — v(T) for

any pair of sets S, T such that S C 7" and for any item z.

An important issue in (submodular) welfare maximization arises with the representation
of valuation functions. A valuation function can be described in detail by listing explicitly the
values for each of the possible subsets of items. Unfortunately, this is clearly inefficient due to
the necessity for exponential input size. A solution that has been proposed in the literature is
to assume access to these functions by queries of a particular form. The simplest such form of

queries reads as
What is the value of agent ¢ for the set of items S?

These are known as valuation queries. Another type of queries, known as demand queries, are

phrased as follows:

Given a non-negative price for each item, compute a set S of items for which the
difference of the valuation of agent ¢ minus the sum of prices for the items in S is

maximized

Approximation algorithms that use a polynomial number of valuation or demand queries and
obtain solutions to submodular welfare maximization with a constant approximation ratio are
well-known in the literature (e.g. see the papers of Feige and Vondrék [2010], Lehmann et al.
[2006], Vondrak [2008]). Our improved approximation algorithm for the non-uniform case of

asymmetric binary matrix partition exploits such algorithms.
5.4 The uniform case

In this section, we focus on the case where the probability distribution p over the columns of
the given matrix is uniform and present the analysis of a greedy approximation algorithm. Our
algorithm uses a greedy completion procedure that was also considered by Alon et al. [2013]. This
procedure starts from a full cover of the matrix, i.e., from column-covering bundles in some
rows so that all one-columns are covered (by exactly one column-covering bundle). Once this
initial full cover is given, the set of columns from A; that are not included in column-covering
bundles in row 7 can form a mixed bundle together with some zero-columns in order to increase

the contribution of the latter to the partition value. Greedy completion proceeds as follows. It
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goes over the zero-columns, one by one, and adds a zero-column to the mixed bundle of the row
that maximizes the marginal contribution of the zero-column. The marginal contribution of a
zero-column to the partition value when it is added to a mixed bundle that consists of = zero-
columns and y one-columns is proportional (due to the uniform distribution over columns) to
the quantity

y y y?

vyl aty @rpatyt+l)
The right-hand side of the first equality is simply the difference between the contribution of

Alz,y) = (x+1)

x + 1 and x zero-columns to the partition value when they form a mixed bundle with y one-
columns. Note that A(0,y) indicates the marginal contribution of a zero-column when put
together with y one-columns to form a (new) mixed bundle. Alon et al. [2013] made the next
extremely important observation. We extensively use it below, as well as the fact that A(z,y)

is non-decreasing with respect to y.

Lemma 5.3 (Alon et al. [2013]). Among all partition schemes that include a given full cover, the greedy

completion procedure yields the maximum contribution from the zero-columns to the partition value.

Our algorithm consists of two phases. In the first phase, called the cover phase, the algorithm
computes an arbitrary full cover for set A*. In the second phase, called the greedy phase, it
simply runs the greedy completion procedure mentioned above. Note that, intentionally, we
have not used much detail in the description of the algorithm and there are three issues that
might seem to cause ambiguity at first glance. First, we have not described any particular way
the full cover is constructed. Second, we have not defined some particular order in which the
zero-columns are examined during the greedy phase. And, third, we have not discussed how
ties are broken when there are multiple rows that maximize the marginal contribution of a
zero-column. So, our description essentially defines a family of greedy algorithms; a different
greedy algorithm is defined, depending on how the above three issues are implemented. In
the rest of this section, we will show that any greedy algorithm has an approximation ratio
of at least 9/10; actually, the three issues do not affect the analysis at all. We will also show
that our analysis is tight by presenting a simple instance for which some greedy algorithm
is at most 9/10-approximate. Even though greedy algorithms are purely combinatorial, our
analysis exploits linear programming duality. In the following, unless otherwise specified, the

term greedy algorithm refers to any member of the family of greedy algorithms.

Overall, the partition value obtained by the algorithm can be thought of as the sum of

contributions from column-covering bundles (this is exactly r) plus the contribution from the
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mixed bundles created during the greedy phase (i.e., the contribution from the zero-columns).
Denote by p the ratio between the total number of appearances of one-columns in the mixed
bundles of the optimal partition scheme (so, the number of times each one-column is counted
equals the number of mixed bundles that contain it) and the number of zero-columns. For
example, in the partition scheme B” in the example of the previous section, the two mixed
bundles are {2,3,4,5,6} in the first row and {1, 2, 3} in the second row. So, the one-columns
2 and 3 appear twice while the one-column 5 appears once in these mixed bundles. Since we
have three zero-columns, the value of p is 5/3. We can use the quantity p to upper-bound the

optimal partition value as follows.

Lemma 5.4. The optimal partition value is at most r 4+ (1 — r)ﬁ.

Proof. The first term in the above expression represents the contribution of the one-columns in
the full cover of the optimal partition scheme. To reason about the second term, recall that our
definitions imply that the total probability of one-columns in the mixed bundles of an optimal
partition scheme is p(1 — ), while the total probability of zero-columns in these mixed bundles
is 1—r. By Lemma 5.2, the second term upper-bounds the total contribution of the zero-columns

to the optimal partition value. O

In our analysis, we distinguish between two main cases depending on the value of p. The
first case is when p < 1; in this case, we show that the additional partition value which is
obtained during the greedy phase of the algorithm (i.e., the contribution of the zero-columns;
recall that the greedy algorithm maximizes this quantity) is lower-bounded by the additional
partition value we would have by creating bundles containing exactly one one-column and an

almost equal number of zero-columns each.

Lemma5.5. If p < 1, then the partition value obtained by the algorithm is at least 0.97 times the optimal

one.

Proof. Using the definition of p, we can lower-bound the number of 1-value entries in the input
matrix A by the sum of the mr column-covering bundles that form the full cover of the optimal

partition scheme and the at least pm(1 — r) appearances of one-columns in the mixed bundles.

Now, consider a selection of the full cover during the cover phase of the greedy algorithm

(this can, of course be different than the full cover of the optimal partition scheme) and let X
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be a set of (exactly) pm(1 —r) 1-value entries in the matrix A among those that are not included

in the cover.

Using Lemma 5.3, we will lower-bound the partition value returned by the algorithm
by considering the following formation of mixed bundles as an alternative to the greedy
completion procedure used in the greedy phase. If 1/p is an integer, for each 1-value entry
of X, we create a mixed bundle that contains the corresponding one-column together with

1

1/p distinct zero-columns. Hence, the smooth value of each zero-column is 175 and the total

partition value of this schemeis r + (1 —r by Lemma 5.4, this is optimal.

) o5

If instead 1/p is not an integer, let & = |1/p|. For each 1-value entry of X, we create a
mixed bundle that contains the corresponding one-column together with k or k + 1 distinct
zero-columns. In particular, m(1 — r)(1 — pk) of these mixed bundles contain one one-column
and k + 1 zero-columns and the remaining m(1 — r)(p(k + 1) — 1) mixed bundles contain one
one-column and & zero-columns. Observe that the smooth value of a zero-column is k—iz in the

first case and k%rl in the second case. Hence, we can bound the partition value obtained by the

algorithm as follows:

k+1 k

> _ _ - - _ 1)

ALG 2 7+ (1= 7)(1 = ph);—— + (1 =) (p(k + 1) = 1)
1+ pk(k + 1)

:r+(1—r)m.

Using Lemma 5.4, we have

14+-pk(k+1 1+pk(k+1
ALG S r+(1-r) (k-i—pl)((k—i-Q)) S (k+p1)((k+2)) _ (1+1/p)(1 + pk(k + 1))
OPT = r+(1-r — & k+Dk+2)

This last expression is minimized (with respect to p) for 1/p = \/k(k + 1). Hence,

ALG - (1 + VEk(k+ 1))2
OPT = (k+1)(k+2)

which is minimized for k£ = 1 to approximately 0.97. ]

For the case p > 1, we use completely different arguments. Of course, we assume thatr < 1,
i.e., the input matrix contains some zero-columns since, otherwise, any full cover computed
during the cover phase of the greedy algorithm would give an optimal partition value. We
will reason about the partition value of the solution produced by the algorithm by considering
a particular decomposition of the set of mixed bundles computed in the greedy phase. Then,

using Lemmas 5.2 and 5.3, the contribution of the zero-columns to the partition value in the
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solution computed by the algorithm is lower-bounded by their contribution to the partition
value when they are part of the mixed bundles obtained after the decomposition. To justify the

correctness of the decomposition, we will use the following observation.

Lemma 5.6. If p > 1, no mixed bundle computed by the greedy algorithm has more zero-columns than

one-columns.

Proof. First observe that the total number of appearances of one-columns in mixed and column-
covering bundles in the optimal partition scheme is at least 7m + (1 — r)pm, which includes
rm appearances of one-columns in column-covering bundles and (1 — r)pm appearances of
one-columns in mixed bundles (there may be additional 1-value entries included in all-one
bundles). So, after the end of the cover phase, there are at least (1 — r)pm > (1 — r)m 1-value

entries that can be included in mixed bundles together with the (1 — )m zero-columns.

Assume, for the sake of contradiction, that some zero-column 7 is included as the (z +1)-th
zero-column in a mixed bundle b together with = 1-value entries for > 1 at some step of the
greedy phase. Prior to that step, there is either some 1-value entry not included in any mixed
bundle which could be used to form a mixed bundle together with Z for a marginal contribution
of A(0,1) = 1/2 or some mixed bundle with y > 1 zero-columns and y+ « 1-value entries (with
a > 1) in which case the marginal contribution would be A(y,y + ) > 1/4. This contradicts
the definition of the greedy algorithm since the marginal contribution of Z was A(z,z) < 1/4

when included in b. O

Now, the decomposition procedure is defined as follows. It takes as input a mixed bundle
with y zero-columns and = one-columns (by Lemma 5.6, it must be = > y) and decomposes it
into y bundles as follows. If z/y is an integer, each bundle has one zero-column and z/y one-
columns. Otherwise, x — y|z/y| bundles have one zero-column and [z/y]| one-columns and
y[z/y] — = bundles have one zero-column and |z/y| one-columns. Clearly, this process does
not alter bundles with a single zero-column. The solution obtained after the decomposition of

the solution returned by the algorithm has a very special structure as our next lemma suggests.

Lemma 5.7. There exists an integer s > 1 such that each bundle in the decomposition has at least s and

at most 3s one-columns.

Proof. Consider the application of the decomposition procedure to the mixed bundles that are

computed by the algorithm and let s be the minimum number of one-columns among the
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decomposed mixed bundles. This implies that one of the mixed bundles, say b;, computed
by the algorithm has y zero-columns and at most (s + 1)1 — 1 one-columns. Denoting by v the
number of one-columns in this bundle, we have that the marginal partition value when the last
zero-column Z is included in b; is exactly

v SR (CR )
v +a—1) -~ (s+2u—-D((s+2n—2)

Alp,v) =

since A(y, v) is increasing in v and v < (s + 1)p — 1. The rightmost expression is decreasing in

_S_

pand p > 1; hence, the marginal partition value of Z is at most -
Now assume for the sake of contradiction that one of the mixed bundles obtained after the
decomposition has at least 3s 4+ 1 one-columns. Clearly, this must have been obtained by the
decomposition of a mixed bundle by (returned by the algorithm) with A zero-columns and at
least (3s + 1)\ one-columns. Denote by »/ the number of one-columns in this bundle and let
us compute the marginal partition value if the zero-column Z would be included in by. This
would be
V"2 (3s+1)2A

S (3s+1)?
WV +A+D+A) 7 (Bs+2)A+1)(3s+2)

AL+1V) = (3s+3)(3s+2)°

>

The first inequality follows since the marginal partition value function is increasing in ' and
V' > (3s + 1)\, and the second one follows since A > 1. Now, the last quantity can be easily
verified to be strictly higher that ;5 and the algorithm should have included Z in b, instead.

We have reached the desired contradiction that proves the lemma. O

Now, our analysis proceeds as follows. For every triplet r € [0,1],p > 1 and integer
s > 1, we will prove that any solution consisting of an arbitrary cover of the 7m one-columns
and the decomposed set of bundles containing at least s and at most 3s one-columns yields
a 9/10-approximation of the optimal partition value. By the discussion above (in particular,
by Lemmas 5.2 and 5.3), this will also be the case for the solution returned by the algorithm.
In order to account for the worst-case contribution of zero-columns to the partition value for
a given triplet of parameters, we will use the following linear program, which we denote by

LP(r, p, s):

3s k
o 0
minimize Z P
k=s
3s
subject to: Z Op=1—r
k=s
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3s

ij@k >p(l—r)—r
k=s
0, >0,k=s,..,3s

The variable 6}, corresponds to the total probability of the zero-columns that participate in
decomposed mixed bundles with k one-columns. The objective is to minimize the contribution
of the zero-columns to the partition value. The equality constraint means that all zero-columns
have to participate in bundles, while the inequality constraint requires that the total number
of appearances of one-columns in bundles used by the algorithm is at least the total number
of appearances of one-columns in mixed bundles of the optimal partition scheme minus one
appearance for each one-column, since for every selection of the cover, the algorithm will have

the same number of (appearances of) one-columns available to form mixed bundles.

Informally, the linear program answers (pessimistically) to the question of how inefficient
the algorithm can be. In particular, given an instance with parameters r and p, the quantity
minint s>1 LP(r, p, s) lower-bounds the contribution of the zero-columns to the partition value
and 7 +minjnt s>1 LP(7, p, s) is a lower bound on the partition value. The next lemma completes

the analysis of the greedy algorithm for the case p > 1.

Lemma 5.8. For every r € [0,1] and p > 1,

9
r+ min LP(r,p,s) > EOPT'

int s>1

Proof. We will prove the lemma using LP-duality. The dual of LP(r, p, s) is:

maximize (1—r)a+((1—r)p—r1))5

k
i : < —k=s,...
subjectto: k8 +a < T 1,k S,...,38

B=0

Using Lemma 5.4, we bound the optimal partition value as

OPT<r+(1-r) P :p—i-?"'
p+1 p+1

Hence, it suffices to show that, for every triplet of parameters (r, p, s), there is a feasible dual

solution of objective value D(r, p, s) that satisfies

_dptr oy
10p+1 "~

r+ D(r,p,s) (5.3)
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S

The feasible region of the dual is defined by the lines 3 = 0, a = w1 — SP and o = 3 Sjl —3s5;

the remaining constraints can be easily seen to be redundant. The two important intersections

of those lines are the points

S

(a, B) = <8+1,0> and (o, ) = <(3+1§)(S;s+1)’ (3—1—1)233—&-1))

with objective values

. B 352 pl—r)—r
S+1(1—r) and Ds(r, p,s) = m(l_r)+m’

Dy (r,p,s) =

respectively. We will show that one of these two points can always be used as a feasible dual

solution in order to prove inequality (5.3). We distinguish between two cases.

Casel. r > p;pl. We will show that the point with dual objective value D;(r, p, s) satisfies

inequality (5.3), i.e.,

ety
10p+1—

(1) (54)

Since s > 1, we have that the left hand side of inequality (5.4) is at least

l+r7 9p+r 1 9p N (1_ 9 >
2 10(p+1))°

2 10p+1 2 10(p+1)

_ 9
10(p+1)

the assumption r > p;pl, as follows:

Since p > 1, we have that 1 — > 0, and we can lower-bound the above quantity using

2 10(p+1)

l+r 9p+r 1 9 p—1<1 9 )_ (p—2)?

- > - + = :
2 10p+1 2 10(p+1) p 10p(p+1) —

and inequality (5.4) follows.

Case II. r < "’;pl. We will now show that the point with dual objective value Ds(r, p, s)

satisfies inequality (5.3), i.e.,

352 p(l—r)—r 9p+r
e T T o@D 10,512

(5.5)

Let us denote by F the left hand side of inequality (5.5). With simple calculations, we obtain

~ 10p* — (—3s® + 36s — 1)p + 30s? . 10p? — (40s — 10)p + 27s% — 45 + 9
- 10(3s +1)(s +1)(p+ 1) 10(3s +1)(s +1)(p+ 1)

F 5.6)

Observe that the numerator of the left fraction in (5.6) is a quadratic function with respect to p

with positive coefficient in the leading term. Its discriminant is —1191s* 21653 +12965% —72s+7
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which is clearly negative for every integer s > 1. Hence, the numerator of the left fraction is
always positive. Now, if the numerator of the rightmost fraction is negative, then inequality

(5.5) is obviously satisfied. Otherwise, using the assumption r < ”%}, we have

e 10p% — (=352 4+ 365 — 1)p+30s2  p—1 10p* — (40s — 10)p + 275> —4s+9
= 10Bs+1)(s+1)(p+1) P 10B8s+1)(s+1)(p+1)
(352 +4s+1)p? + (352 — 365+ 1)p + 275> —4s+9

10p(3s+1)(s+ 1)(p+1)

Now, the numerator of the last fraction is again a quadratic function in terms of p with positive

coefficient in the leading term and discriminant equal to
—3155* — 60053 + 11505 — 2005 — 35 = (—315s3 — 9155% 4 2355 — 35)(s — 1) < 0,
for every integer s > 1. Hence, F' > 0 and the proof is complete. O

The next statement summarizes the discussion above.

Theorem 5.9. The greedy algorithm always yields a 9/10-approximation of the optimal partition value

in the uniform case.

Our analysis is tight as our next counter-example suggests.

Theorem 5.10. There exists an instance of the uniform asymmetric binary matrix partition problem for

which a greedy algorithm computes a partition scheme with value (at most) 9/10 of the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem that consists

of the matrix

1 000
0100
A= 1100
1100

with p; = 1/4 for ¢ = 1,2, 3,4. The optimal partition value is obtained by covering the one-
columns in the first two rows and then bundling each of the two zero-columns with a pair of
one-columns in the third and fourth row, respectively. This yields a partition value of 5/6. A
greedy algorithm may select to cover the one-columns using the 1-value entries A3; and Aq4s.
This is possible since the greedy algorithm has no particular criterion for breaking ties when
selecting the full cover. Given this full cover, the greedy completion procedure will assign each
of the two zero-columns with only one one-column. The partition value is then 3/4, i.e., 9/10

times the optimal partition value. O
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5.5 Asymmetric binary matrix partition as welfare maximization

We now consider the more general non-uniform case. Interestingly, property P1 of Lemma 5.1

does not hold any more as the following statement shows.

Lemma 5.11. For every e > 0, there exists an instance of the asymmetric binary matrix partition
problem in which any partition scheme containing a full cover of the columns in A yields a partition

value that is at most 8/9 + e times the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem consisting of

the matrix

= o O
S = = O
— o O O
o O O O

_ 1

with column probabilities p; = 513 forj =1,2,3and py = B for B > 2. We will first prove

B+3
an upper bound on the partition value of any partition scheme containing a full cover. Then,
we will present a partition scheme without a full cover, which has a strictly higher partition

value. The desired ratio of 8/9 + € will then follow by setting the parameter /5 appropriately.

Observe that there are four partition schemes containing a full cover (depending on the
rows that contain the column-covering bundle of the first two columns). In each of them, there
are two 1-value entries in different rows that are not included in the full cover, and only one
of them can be bundled together with the zero-column. By making calculations, we obtain that

ey . . 4543 . ey .
the partition value in these cases is (F+1)(573)- Here is one of these partition schemes:

1 0 ] 0 0
Bl {1}/ {27374} B 0 1 0 0
By | {2},{1,3,4} 4 0o || o 1
Bs | {1,3},{2,4} At Al
3 ) 7 ) 1 0 1 0
By | {1}, {3}, {2,4} B 1 T T B
pj-max; AG | 533 | 333 | 593 | IO

In contrast, consider the partition scheme B’ in which the 1-value entries A4;; and Ajy form
column-covering bundles in rows 1 and 2, the entries A3y and Ass are bundled together in row

3 and the entries A41, A43, and A4y are bundled together in row 4. As it can be seen from the

4.58+5

tables below (recall that 5 > 2), the partition value now becomes (DL

Clearly, the ratio of the two partition values approaches 8/9 from above as § tends to

infinity. Hence, the theorem follows by selecting /3 sufficiently large for any givene > 0. [
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1 0 0 0
By [ {1}, {2,3,4} o 0| 1 0 0
B, | {2},{1,3,4} 4 0 | 1/2| 1/2 0
By | {1,4},{2,3} 5| 0 | 7 512
Bfl 2%, {1,3.4} = BJlrz - BJIrQ 524%2

Still, as the next statement indicates, the optimal partition scheme has some structure which

we will exploit later.

Lemma 5.12. Consider an instance of the asymmetric binary matrix partition problem consisting of a
matrix A and a probability distribution p over its columns. There is an optimal partition scheme B that

satisfies properties P2, P3, P4 (from Lemma 5.1) as well as the new property P5:

P2. For each row i, B; has at most one bundle containing all columns of A;r that are not included in
column-covering bundles in row i (if any). This bundle can be either all-one (if it does not contain

zero-columns) or the unique mixed bundle of row 1.

P3. For each zero-column j, there exists at most one row i such that j is contained in the mixed bundle

of B; (and j is contained in the all-zero bundles of the remaining rows).

P4. For each row 1, the zero-columns that are not contained in the mixed bundle of B; form an all-zero

bundle.

P5. Given any column j, denote by H; = argmax; Ag the set of rows through which column j
contributes to the partition value vB (A, p). For every i € H; such that A;; = 1, the bundle of

partition B; that contains column j is not mixed.

Proof. We first focus on property P5. Consider an optimal partition scheme B that does not
satisfy property P5, and let j* be a column such that A;«;« = 1 for some i* € H;«. Furthermore,
assume that the mixed bundle b of partition B;- that contains column 5%, also contains the
columns of a (possibly empty) set b C A} \ {;*} and the columns of a non-empty set by C AY..

Let p* > 0 and p° > 0 be the sum of probabilities of the columns in b; and by, respectively.

Let B’ be the partition scheme that is obtained from B when splitting bundle b into two
bundles {j*} and b\ {j*}; we will show that B’ must be optimal as well. Observe that A ;=
% and AiBi'j = pfiipo for every j € b\ {j*}; hence, AZ; > Afi'j. Since, this is the only

difference between B and B, the difference max; Ag —max; Ag’ is at most A2 = Aﬁ/j for every
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i - % 4B AB' _ 4B B pj*+p+
J € b\{j*}, and for j*, max; A;. —max; Aj. = Ajl . — Al = bt L Hence, we have

0P (A, p) — P (A, p) = Z P - mlaxAg - Z Dj ~miaxA£,
J€[m] J€[m]

= ij <max Ag — max Ag)
2 7

jeb
B B’

Jj€eb
_p,( pj +p* 1>+ 5 p,( pj» +p* p* >
-t N L0 J . T L0 ot 10

pj* +pT +p i) pjx +pT+p° pT+p

pj- +pt pt
T P D) et P

J FELN{G*} JEN{G*}
:()7

where the second last equality is just a rearrangement of terms and the last one follows from
the fact that 3~ o\ ;41 05 = pT + p°. Hence, the partition value does not decrease. By repeating
this argument, we will reach an optimal partition scheme that satisfies property P5. Then, using
arguments similar to the ones used in the proof of Alon et al. [2013] for Lemma 5.11 is we can
prove that the resulting partition scheme can be transformed in such a way so that it satisfies

properties P2, P3, and P4. O

What Lemma 5.12 says is that the contribution of column j € AT to the partition value
comes from a row i such that either j € A and {j} forms a column-covering bundle (and,
hence, its smooth value is 1) or j € A? and j belongs to the mixed bundle of row i (and the
smooth value of its entries is strictly smaller than 1). A non-zero contribution of a column j € A°
to the partition value always comes from a row ¢ where j belongs to the mixed bundle. A
column j € A° can have a contribution of zero to the optimal partition value when no mixed
bundle exists?. Hence, the problem of computing the partition scheme of optimal partition
value is equivalent to deciding the row from which each column contributes to the partition
value, either as a one-column that is part of a (not necessarily full) cover or as a zero-column

that is part of a mixed bundle.

Let B be a partition scheme and S be a set of columns whose contribution to the partition

value of B comes from row ¢ (i.e., ¢ is a row that maximizes the smooth value Ag» for each

'Invoking Lemma 5.2 in order to prove property P2 is crucial here; verifying properties P3 and P4 is much easier.

2 As an example of such an extreme case, consider an instance with a k x (k1) matrix that consists of the identity
k x k matrix and an extra zero-column, and has a uniform probability distribution over the columns. The optimal
partition scheme contains a full cover and all-zero bundles only, and the zero-column has no contribution to the
partition value.
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column j in ). Denoting the sum of these contributions by R;(S) = >_,csp; - Af;., we can

equivalently express R;(S) as

2 jesna? Pi 2 jeat\s Pi
D jesnat Pi 2 jeat\s Pi

R;(S) = Z pj +

jesnAaf

The first sum represents the contribution of columns of SN 4;" to the partition value (through
column-covering bundles) while the second sum represents the contribution of the columns in
SN AY which are bundled together with all 1-value entries in 4; \ S in the mixed bundle of row
i. Then, the partition scheme B can be thought of as a collection of disjoint sets .S; (with one set
per row) such that S; contains those columns whose entries achieve their maximum smooth
value in row i. Hence, the partition value of B is v® (A, p) = >_icfn) Ri(Si) and the problem is
essentially equivalent to welfare maximization where the rows act as the agents who will be

allocated bundles of items (corresponding to columns).

Lemma 5.13. For every row 14, the function R; is non-decreasing and submodular.

Proof. We will show that the function R; is non-decreasing and has decreasing marginal

utilities, i.e.,

* (monotonicity) for every set S and item x ¢ S, it holds that R;(S) < R;(S U {z});

* (decreasing marginal utilities) for every pair of sets S, T such that S C T and every item

x ¢ T, itholds that R;(S U {x}) — Ri(S) > Ri(TU{z}) — Ri(T).

In order to simplify notation, let us define the functions a(S) = > . gna+pj B(S) =

ZjeSmA? pj and v(S5) = ZjeAj\S p;j. We can rewrite the function R; as

B(S) -7(5)

Ri(S) = a(8) + Gr 5

Let S,T C [m] be two sets of columns such that S C 7" and let « be a column that does not

belong to set 7. We distinguish between two cases depending on z. If € A, observe that
e a(SU{z}) = a(S) +pyand a(T U {z}) = a(T) + pa;
* B(SU{z}) = B(S) and B(T U{z}) = B(T);

* Y(SU{z}) =7(5) —ps and Y (T U {z}) = (T) — ps-
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Using the definition of function R;, we have

Y(S) — pe v(S)
RS Uz} = Rul8) = pa + () (5(5) ) —p B +7(5)>

— p2fB(S)?

O (B(S) +7(9)(B(S) +(S) — pa)
—_— paB(S)?
=7 (B(S) +v(D))(B(S) +(T) — pa)
> paB(T)?
— (BT +A(T)(B(T) +A(T) — pa)

= R(T'U{a}) — Ri(T).

The first inequality follows since v is non-increasing and S C T and the second inequality

follows by applying twice (with a = v(T') and a = y(T') — ps, respectively) the fact that the

function f(z) = ;7 for a > 0 is non-decreasing.

If instead = € AY, observe that

e a(SU{z}) =a(S) and a(T' U {z}) = a(T);

* B(SU{z}) = B(S) + pr and BT U{z}) = B(T) + pa;
* Y(SU{z}) =~(S) and (T U {z}) = (T).

Hence, we have

RSO ) =R =2 () 2285~ B9 £ 09)
B pay(S)?
(B(S) +~(S)N(B(S) +~(S) + pz)
peY(5)?
(B(T) +4(9)(B(T) +~(S) + pz)
pm'Y(T)Q

= B + @) BT) + (@) + p2)
— Ri(T U {z}) - Ri(T).

Again, the first inequality follows since (3 is clearly non-decreasing and S C 7" and the second

inequality follows by applying twice (with a = §(T') and a = B(T) + pa, respectively) the fact

that the function f(z) = ;7 with a > 0 is non-decreasing.

We have completed the proof that R; has decreasing marginal utilities. In order to establish
monotonicity, it suffices to observe that the quantity at the right-hand side of the second
equality in each of the above two derivations starting with R;(S U {z}) — R;(S) is non-

negative. O
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Lehmann et al. [2006] presented a simple greedy algorithm that uses value queries and
yields a 1/2-approximation of the optimal welfare for the submodular welfare maximization
problem. This algorithm considers the items one by one in arbitrary order and assigns item j
to an agent that maximizes the marginal valuation (the additional value from the allocation
of item 7). In our setting, this algorithm considers the one-columns first and the zero-columns
afterwards. Whenever considering a one-column j, a column-covering bundle {;} is formed
at an arbitrary row i with j € A} (such a decision definitely maximizes the increase in the
partition value). Once all one-columns have been processed, the remaining 1-value entries
(that did not form column-covering bundles) in each row are grouped into a bundle. All these
bundles are available to host zero-columns (that will be processed next) and evolve into mixed
ones. Afterwards, whenever considering a zero-column, the algorithm includes it to a mixed
bundle that maximizes the increase in the partition value. Using the terminology we used in
Section 5.4, the algorithm essentially starts with an arbitrary cover of the one-columns and then

it runs the greedy completion procedure.

Again, we use the term greedy algorithm to refer to the whole family of algorithms that are
defined by different implementations of the several missing details in the above description,
such as the order in which the one-columns are processed, the particular way the column-
covering bundles are selected, the order in which the zero-columns are processed, and the way
ties are broken between different mixed bundles to which a zero-column can be added. Our

analysis below holds for any member of this family.

Theorem 5.14. The greedy algorithm for the asymmetric binary matrix partition problem has
approximation ratio at least 1/2. This bound is tight.

Proof. The lower bound holds by the equivalence of the greedy algorithm with the algorithm
studied by Lehmann et al. [2006]. Below, we prove the upper bound. In particular, we show
that for every ¢ > 0, there exists an instance of the problem in which the greedy algorithm

obtains a partition scheme whose value is at most 1/2 + ¢ of the optimal one.

Let & > 0 be a positive integer and « significantly higher than k. Consider the instance of

the asymmetric binary matrix partition that consists of the following (k + 1) x (k + 1) matrix

10 --- 00

01 .- 00
A= @

0 0 10

1 1 1 0

126



where p; = ,ﬁ%a for j € [k] and pg41 = ita- S0, the first k columns and rows of A form an
identity matrix, the last column has only 0-value entries and the last row consists of £ 1-value
entries in the first k£ columns. In order to lower-bound the optimal partition value, consider the
partition scheme consisting of a full cover that contains the 1-value entries (7,7) for i < k, and a
bundle containing the whole (k + 1)-th row. The optimal partition value is lower-bounded by

the value of this partition scheme. By simple calculations, we obtain

OPT > w.

(k+ )?
On the other hand, the greedy algorithm may select first to cover the k£ one-columns using the
1-value entries (k + 1,j) for j < k and, then, bundle the zero-column together with only one
1-value entry in some of the first £ rows. The partition value of the greedy algorithm is then

E+(kE+1)a

GREEDY = ——MM—.
(k4 a)(a+1)

Hence, the ratio between the two partition values is

GREEDY _ (k+a)(k+ (k+1)a)
OPT ~— (k2+2ak)(a+1) °

Pick an arbitrarily small § > 0; then, there exist a value for « (significantly higher than k) so
that the above ratio satisfies % < Etl 4 5. The theorem follows by picking  sufficiently

large and ¢ sufficiently small. O

We can use the more sophisticated smooth greedy algorithm of Vondrak [2008], which uses

value queries to obtain the following.

Corollary 5.15. There exists a (1 — 1/e)-approximation algorithm for the asymmetric binary matrix

partition problem.

One might hope that due to the particular form of the functions R;, better approximation
guarantees could be possible using the (1 — 1/e + ¢)-approximation algorithm of Feige and

Vondrak [2010] which requires that demand queries of the form

given agent ¢ and a price ¢; for every item j € [m], select the bundle S that

maximizes the difference R;(S) — > cqs4;

can be answered in polynomial time. Unfortunately, in our setting, this is not the case in spite

of the very specific form of the function R;.
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Lemma 5.16. Answering demand queries associated with the asymmetric binary matrix partition

problem are NP-hard.

Proof. We use reduction from Partition to show that the following (very restricted) decision

version DQ of a demand query is NP-hard.

DQ: Given a 1 xm binary matrix A, probabilities p; and prices g; for column j € [m],

is there a set S C [m] such that R;(S) — >_,c5¢; > 5/187?

We start from an instance of Partition consisting of a collection C' of ¢ items of integer size

w1, we, ..., wy and the question of whether there exists a subset Y C C' of items such that

Sui= Y wi= g > uy

jey JEC\Y jeC

Define W = ..~ w;. Given this instance, we construct an instance of DQ with m =t + 1

jeC
as follows. The binary matrix A consists of a single row that contains ¢ 1-value entries with

associated probabilities 51, 572, ..., o7 and a 0-value entry with associated probability 1/2. Set

the prices as ¢; = 158% forj=1,...,tand ¢4+, = 0.

By the definition of the function R;, given a set S C [t + 1], we have

1
1 W 2ojef\s Wi 5
Ri(S) = qj = oW > w1 elh BT >

1 1 .
jes jesiry 2w ges i B S

2 Z Zje[t}\s wj

w; + .

—
—_

Now, consider the function f(z) = % - 92—‘,?, + ﬁ ; the equality above implies that

Ri(S)=> aqi=f| Y wy

j€S JENS
By nullifying the derivative of function f, we obtain that it has a unique maximum at z = W /2.
Since f(W/2) = 5/18, the instance of DQ is equivalent to asking whether there exists a set .S
such that 3.y g wj = W/2, which is equivalent to asking whether there exists a set of items

of total size W /2 in the instance of Partition. O
5.6 Conclusion

In this chapter, we studied the asymmetric matrix partition problem that is related to revenue

maximization in take-it-or-leave-it sales, and focused on its binary version. In short, an instance
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of the problem consists of a matrix of non-negative real values, and a probability distribution
over its columns that can either be uniform or non-uniform. The goal is to find a partition of
every row of the matrix into asymmetric bundles so that the expected value of each column is

maximized.

For the case where the probability distribution over the matrix columns is uniform, we
designed a simple greedy 9/10-approximation algorithm, whose analysis was heavily based
on dual fitting techniques. For the case where the probability distribution is non-uniform, we
showed that there exists a (1 — 1/e)-approximation algorithm, by reducing the problem to the
problem of submodular welfare maximization. Both of these results significantly improve upon

the corresponding results presented in the previous work of Alon et al. [2013].
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Chapter 6

Conclusions and open problems

In the previous four chapters of this thesis, we focused on the presentation of the results that we
were able to obtain for the different problems that we studied. In particular, we designed and
analyzed simple resource allocation mechanisms for budget-constrained users in Chapter 2,
we bounded the price of anarchy and stability of compromising opinion formation games in
Chapter 3, we designed truthful mechanisms for ownership transfer using expert advice in
Chapter 4, and, finally, we designed efficient approximation algorithms for the asymmetric
binary matrix partition problem in Chapter 5. However, in each of these problems, our work
inevitably leaves open several interesting and important questions as well as reveals new ones.
In this concluding chapter of the thesis, we discuss several of these possible directions for future

research.
6.1 Resource allocation and auctions for budget-constrained users

Even though we have revealed an almost complete picture on the liquid price of anarchy of
resource allocation mechanisms in Chapter 2, the gap between the lower bound of 2 — 1/n
for all mechanisms and the bound of 2 that the Kelly mechanism is able to achieve leaves the

following interesting open question:

Open question 6.1. Is the 2 — 1/n bound achievable, preferably by a simple mechanism?

In particular, is there a mechanism with proportional allocation function and appropriate non-
pay-your-signal payments that achieves this LPoA bound? This question seems technically
challenging even for the case of two players only, where our best 2-player mechanism E2-SR
(presented in Section 2.7.2) can achieve an LPoA bound of approximately 1.53, while the lower

bound is 1.5.
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Regarding the liquid price of anarchy over more general equilibrium concepts (like mixed
and correlated equilibria) or settings with incomplete information (and Bayes-Nash equilibria),

our results lead to the following natural open question:

Open question 6.2. Is the Kelly mechanism still optimal within low-order terms for general

equilibrium concepts?

Caragiannis and Voudouris [2016] showed that the set of mixed Nash equilibria induced by
the Kelly mechanism coincides with that of pure Nash equilibria, even when the users have
budget constraints. Therefore, it turns out that Kelly is indeed optimal within low-order terms
for mixed Nash equilibria. However, for even more general equilibrium concepts, we are
far from answering this question. The papers by Caragiannis and Voudouris [2016] and by
Christodoulou et al. [2016b] present such LPoA bounds for Kelly over coarse-correlated and
pure Bayes-Nash equilibria, but these are not known to be tight. We conjecture that the proof
of tight LPoA bounds over more general equilibrium concepts for any resource allocation
mechanism should exploit the structure of worst-case games and equilibria as we did in
Chapter 2 for pure Nash equilibria. Unfortunately, extending our characterization from Section

2.5 to more general equilibrium concepts seems elusive at this point.

In Section 2.8.1, we proved a slightly weaker lower bound of 4/3 on the liquid price of
anarchy of any budget-aware resource allocation mechanism. This leaves open the possibility

of finding such a mechanism that could beat the bound of 2 — 1 /n.

Open question 6.3. Which is the best budget-aware resource allocation mechanism?

Unfortunately, our characterization of worst-case games and equilibria from Section 2.5 does
not seem to extend to the case of known budgets. Therefore, in order to be able to prove
tight bounds and pinpoint the best budget-aware mechanism, we need to obtain a different

characterization, which is an extremely challenging and technically non-trivial task.

Finally, in general, we believe that the liquid welfare is an appropriate efficiency benchmark
for auctions with budget-constrained players. The recent paper by Azar et al. [2017] studies
the LPoA of simultaneous first-price auctions over Bayes-Nash equilibria, while the paper by
Voudouris [2018] focuses on the LPoA of position mechanisms over pure Nash equilibria.
Obtaining similar results for other auction formats is certainly an important future research
direction; see the recent survey of Roughgarden et al. [2017] on the price of anarchy of auction

mechanisms.
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Open question 6.4. Which is the best auction mechanism for budget-constrained players with

respect to the liquid welfare efficiency benchmark?

Needless to say, we do not expect that the liquid welfare is unique as a measure of efficiency
in settings with budgets. Defining alternative efficiency benchmarks and studying the price of
anarchy with respect to them would shed extra light to the strengths and weaknesses of auction

mechanisms.
6.2 Compromising opinion formation

In Chapter 3, we introduced the class of compromising opinion formation (k-COF) games by
enriching that of co-evolutionary opinion games with a cost function that urges players to
essentially meet halfway. Our findings indicate that the quality of their equilibria grows linearly
with the neighborhood size &, but there exists a gap between our lower and upper bounds
for k > 2; closing this gap seems to be a challenging technical task and may require different

analysis techniques.

Open question 6.5. What is the tight bound on the price of anarchy and stability of k-COF

games for k > 2?

Furthermore, for 1-COF games, due to the tight bound of 3 for pure equilibria and the lower
bound of 6 for mixed equilibria, we know the equality of mixed equilibria is strictly worse than
that of pure ones. However, we were not able to prove any upper bounds on their price of

anarchy.

Open question 6.6. Is the price of anarchy over mixed equilibria still linear?

Another natural question is about the complexity of pure equilibria in k-COF games. For
k =1, we managed to show that computing the best and worst pure equilibria can be done by
searching for paths of minimum and maximum total weight in directed acyclic graphs where

the node correspond to partial segments of the game.

Open question 6.7. Can we efficiently compute pure Nash equilibria for & > 2?

Driven by our positive results for 1-COF games, we conjecture that there exists a polynomial
time algorithm for computing equilibria in more general k-COF games, but finding such an
algorithm remains elusive at this point. Similarly, one could also focus on the complexity of

computing optimal opinion vectors, even for k = 1.
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Finally, our modeling assumption that the number of neighbors is equal for all players is
rather restrictive. It would be interesting to investigate whether our results (qualitative and

algorithmic) can be extended to more general scenarios.

Open question 6.8. Do our results extend to compromising opinion formation games with

players of different neighborhood sizes?

One possible such generalization is to combine our approach with the Hegselmann-Krause
model so that the neighborhood of each player i consists solely the players j # ¢ with opinions

that are sufficiently close to the i’s belief.
6.3 Ownership transfer

In Chapter 4, we presented a series of positive and negative results for a simple mechanism
design model with and without monetary transfers, which we believe that captures the main
challenges in the implementation of ownership transfer. Still, closing the gap between the
approximation ratio of 5/4 of the template mechanism R (see Section 4.7) and our general
unconditional lower bound of approximately 1.14 for any truthful mechanism (see Section 4.8)

is an important and definitely non-trivial challenge.

Open question 6.9. Which is the best possible achievable approximation ratio?

A possible direction towards answering the above question could be to consider extensions of
the template mechanisms by exploiting a few more bits of information about the preferences
of the expert. One could also consider the alternative of using bid-independent mechanisms
embedded with extra bits of information that could be distilled by the values reported by the
bidders.

Besides the aforementioned concrete open problem that is directly related to our results
in this thesis, there are many natural extensions of the model that are worth studying. For
example, we have weighed equally the contribution of the expert and the agents to the social
welfare. We can generalize the definition of the welfare by introducing a factor of & > 0, by

which the contribution of the expert will be multiplied.

Open question 6.10. Can we design near-optimal truthful mechanisms for the different values

of the parameter a?

In cases where the parameter « is very large or very small, we expect that bid-independent and

expert-independent mechanisms will be almost optimal, respectively. However, we suspect
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that there are values of the parameter « (close to 1) that make the mechanism design problem

even more interesting.

Another extension could be to consider a different optimization objective; for example, by

mixing the welfare of the expert with the revenue that can be extracted by the bidders.

Open question 6.11. Can we design truthful mechanisms that maximize the sum of expert

welfare and revenue?

We remark that in order for the revenue to be (part of) a meaningful objective, one would have
to restrict attention to individually rational mechanisms that guarantee non-negative utility to the
agents for participating. This is an important property, since otherwise a truthful mechanism
could simply ignore their bids and charge them the maximum possible amount. In fact, the
related literature on revenue-maximization focuses on mechanisms which are individually
rational for this reason. However, in our setting, it is not hard to see that bid-independent,
individually rational mechanisms must always extract zero revenue. It is also well-documented
that revenue maximization is a less meaningful objective in the absence of prior knowledge
of the values of the agents [Hartline, 2013], and it is commonly assumed that these values are
drawn from some known distributions [Myerson, 1981, Nisan et al., 2007]. Therefore, designing
efficient truthful mechanisms for such an optimization objective requires radically different

ideas, or perhaps even the migration to a Bayesian setting.

Our model of one expert and two competing bidders can be thought of as the simplest
possible non-trivial ownership transfer scenario. There are many important generalizations
that one could consider for future research. Indicatively, these could include larger populations
of experts and agents, more than one assets to be transfered with combinatorial constraints
governing their acquisition, or even dynamic expert preferences that depend on the bidding

information. All of these lead to the following abstract open question:

Open question 6.12. Can we design near-optimal truthful mechanisms for generalizations of

ownership transfer?

Finally, we believe that the combination of mechanism design with and without money can
be exploited in different contexts as well, especially in settings where the agents are partitioned
into groups depending on whether they value money or not. Our setting of ownership transfer

is such a setting, but it is definitely not unique in its kind.
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6.4 Asymmetric matrix partition

In Chapter 5, we focused on the binary version of the asymmetric matrix partition problem
and presented improved approximation algorithms for uniform and non-uniform probability
distributions, compared to the previous work of Alon et al. [2013]. Designing algorithms with
even better approximation guarantees or proving stronger inapproximability results for this

version of this problem is a first obvious open problem.

Open question 6.13. What are the limits of approximation for the asymmetric (binary) matrix

partition problem?

Recall (see Section 1.4) that the motivation behind the definition of the asymmetric matrix
partition problem comes from revenue maximization in take-it-or-leave-it sales, where the goal
is to exploit possible asymmetries in the information of the seller and of the potential buyers.
Admittedly, in the (uniform) binary case of the problem, the fact that the greedy partition
schemes contain column-covering bundles makes it possible for a buyer to distinguish between
cases in which she is actually offered an item that she values as 1 (a singleton bundle with
smooth value of 1) or 0 (a mixed bundle). This is clearly a drawback and asymmetric binary
matrix partition should not be used to model such simple take-it-or-leave-it sales. One possible
remedy could be to lower-bound the size of any bundle with non-zero value or require some
symmetry among the bundles that contain any given zero-column, so that no information about

the item selected by nature is revealed to the buyer by the seller.

Open question 6.14. Given additional constraints that guarantee no information revelation,

can we design near-optimal approximation algorithms?

Still, we believe that asymmetric binary matrix partition is important as an algorithmically
challenging problem and can provide insights to efficient solutions for revenue maximization.
In this direction, the above issue does not seem to be as severe in the general asymmetric
matrix partition. This is justified by the assumption that buyers do not know each other and

information about the particular item that is selected to be sold is not as easy to be inferred.
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Appendix A

Extended abstract in Greek

Yxedraopog xat avaloorn alyopibpwv
yla pn) oovepyatika neptpallovta

ANe§avopog Avopiag Boodoovpng

Tig televtaleg OvVo Oekaetieg, 1) TAXVTATI KAl OLVEXMDG AVSAVOPEVI] AVAIITLSH TOL AladikTOOL
KAl TOV KOWVOVIKOV OIKTO®V, £XEL 001 Y1)0€l 0TIV DAOIIOIN O] 1) OOVEPYATIK®OV IEPIBANOVI®Y,
01100 MMOA\ATIAEG EYDKEVTPIKEG OVTOTITEG avtay®viovtat 1) pia v aln. ['ia mapadetypa, ot
OVTOTITEG UIIOPEL VA ELVAL XPI|OTEG £VOG TNAEMKOIVMOVIAKOD KAVAALOD IOV AVIAy®dVIiLovTat yia
T0 IIEPLOPLOpEVO Otabeotpo edPog (VG OLaPNILOTEG ITOL aviaywvifovTat yia tov dwabéoyo
XOPO StaPnong o€ 10tooeAideg AITOTEAEOPAT®V avadrtorng, epyoAdpot oo aviayevifovtat
Yla GOpPETOXT) O dnpoota €pyd, 1) aKOpn Kat amloi avipaIiot ot oroiot ov{ntave pe Ta atopa
TOL KOW®VIKOD TOLG MEPLYyDPOL Yyl HOMTIKA Bépata exppdlovTag anoyelg. Ze OAa aovtd ta
oevdpld, Ol OVTOTITEG elval ovvi0mg eyOKeVTPIKEG Kat Kabe pia amd avtég éxel g OKOIO TO
va emAeel TV KaAvtepn) dovatr) oTpatnyks) yid va PEATICTONOU|OEL TOVG IIPOOMITIKOVG TG
0TOX0VG, Ot or1otot Oev enmnpedalovtat povo amo TV vIokeipevr) dopr) Tov mePPANAOVTOg, ald
KAt Ar1o Tig AAAEG OVTOTITEG (KAl TIG OTPATIYIKEG ITOV AUTEG EMAEYOLV).

Yniapyoov moAAéG ONpLavTiKéG DITOAOYIOTIKEG EPMTHOELG IOV APOPOVY TNV £DOTADELA KAt TV
arodoon) TV cLOTNPATEV Mov avadvovtat ot pn ovvepyatkda neptPpdrlovra. [Towa etvar )
OO TN TA (TO00 KAADTEPTG 00O KAt XEPOTEPNG MEPLTTMONG) TOV KATAOTACEDV 100PPOIILAG IOV
KATAAN YOOV T OTPATYIKA DAty vidla (ta omoia avakOIItovy Ao Tr) OTPATH YK OOHIEPIPOPU
TOV OVTOTI|T®YV, Ol OIOlEG AELTOLPYOLV ®G Maikteg); Mmopovpe va oyedidaoovpe PeATi®pevVovg

I XCVIOHODG O1 OTIO101 EMUTAEOV VA IIAPEXOVV KAt TA KATAANAA KIVI TP OTOLG IAKTEG MOTE VA
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avag@épovv navta v aindela yua Tig IpoTpnoetg Toug Ze avty Vv Atatpifr), anavidape og
TETOLEG EPWTNOELG YA TE0OEPA IPOPANLATA IOV IIPOKVITTOVY OF 1) CLVEPYATIKA HePBAaAovta
KATAVOHIG Olape0p®V MOP®V, SapOpPOONG AIOYEDV, HETAPOPUS 1O10KTNOLAG, KAl PEYLOTO-
11oinong e000MV 08 CLVOLAOTIKEG IMATOELG. 2T OLVEXEL, OIVOLIE Pld OOVOITIKI) TIEPLYPAPT)

auTOV TOV IPOPANPATOV, KAO®MG KAl TOV AIIOTEAEOPAT®V M.
A1l Katavopr nopwv pe NEPLOPIOROVG IIPODIIONOYIOHOD

H xartavopr) nopev etvat eva amo ta Pactkd IPoPArjpatd Iov IPOKOIITOLY AVAIIOPELKTA O
OAd T DIIOAOYLOTIKA OLOTHHATA, O dlaPopeg pop@Peg. MAAoTa, Tig ITEPLOCOTEPES POPEG O O)E-
dlaopog amodoTIK®V ADOEDV Y1 KATAVOHL] HOP®V dnpiovpyel pn-teTptppeveg alyoptopikeg
IIPOKAT0€1G. Q¢ €K TOOTOV, 1] OXETIKI] AAYOPlOPIKI) epeLVNTIKT] KOvOTNTA £xel anacyoAnOet pe
Vv oxediaon Kat avalvor) anodotik®v alyopibpev yla mpoPAnpata Katavoprg Hopmv 06
Kat dekaetie. H mpoogaty avamtodn Katavepnpévoy oooTRAT®V peyalng KApAKag pe pn
ODVEPYATIKOVG XPIO0TEG O1 omoiot aviay®vifovtatl yia IpooPaon) ot IEPLOPLOPEVODG TOPODG,
£xel 0dnyr|oet 0TV avAaloon OXETIK®V IPOPANHATOV KATAVOHNG IOP®V HIE XPI)O01) EVVOI®V KAt
epyaleiav g Oewpiag Iatyvimv.

Meletdpe pia OOYKEKPIPEVT] KAAOT U YaVIOUOV KATAVOUT]G T0P@V Ot ortotot potpaldovv evav
diaipeopio mopPo (ON®G To eDPOg (AOVNG EVOG TNAEMKOIWVMVIAKOD KAVAAIOD, O DIIOAOYIOTIKOG
xpovog ptag CPU, o armobnkevtikog xwpog evog cloud kTA.) otovg xprjoteg wg e8r)g. Kabe xprotng
vnoPdalet éva Babp@to onua (évav pn-apvntiko Ipaypatiko aptdpo). AeGOPEVOV ADTOV TOV
ONPAT®V, O PNXAVIOROG arropaoifel To P€POG ToL IOPOL oo Ba napet Kabe ypriotng, Kabwmg Kat
TO IIOOO TOV XPNpat®v mov Ha mpénet va minpwoet yia avtod. Eva khaowo napddetypa eivat
0 aVAaAOY1KOG pYaviopog rmov npotadnke amo tov Kelly [1997] (dette emiong Vv epyaoia tov
Kelly et al. [1998]), ooppmva pe tov oroio to pepog Tov mOPow Mmov naipvet kabe xprjotng etvat
avaloyo ToL OHPATOog ITOL LIIOPANNEL, EV® TO ONHA elvat 1) TANP®HL TOV.

AxolovOmvTag Tig Torikeg vIodLoelg ot oxeTkr| PtpAoypapia, Oempodpe OTL ) ATIOTIPNOT
Kdabe xpriot ywa ta dtagopa pépn tov Mopov vroAoyiletal péom piag WOIWTIKNG oVVAPTHONG
anotiynong. O NApandave 0PLopOg T®V HNXAVIOHOV KATAVOHTG HOP®V EMTPEIIEL OTOVG XPI|OTEG
va oopreptpepfodv oTPATYIKA LIIO TNV €vvold OTL TO ONpd IOV eMAEyoLV va vIIOBAANovY
elVal TETO10 MOTE I OPENELT TOVG (ATIOTIPN O Y1d TO HEPOG TOL TIOPOL MOV IAIPVOLV HeElOV TNV
AN P®HI) Tovg) peytotonoteitat. PuoKd, avtr) 1 COPIEPLPOPA OPifel Eva OTPATYIKO IatyVvidt

petadv v xpnotav, ot oroiot Spovv g rnaikteg. Metd tov optopo tov pryaviopoo tov Kelly,
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Hla oglpd amno epyaocieg peAétnoav v daapdn Kat I povadikoTnta TOV autyoV 100pporiov
katd Nash (Kataotdoelg Tov Iatyvioon OIIov To Onpd Kabe Iaikty) peyloTonotel TV IPOCMIIKY
TOL WPEAELA) TV DIIOKEIpEVOV oTpatnykov natyvidiwv [Hajek and Gopalakrishnan, 2002, La
and Anantharam, 2000, Maheswaran and Basar, 2003] xat moootikonoinoav v amodoTiKo-
tta toug [Johari and Tsitsiklis, 2004] @pacocovtag to xootog 17§ avapyiag [Koutsoupias and

Papadimitriou, 1999].

ITwo ovykexpipéva, ot Johari and Tsitsiklis [2004] xpnotpomnoinoav wg pétpo amodoong to
KOIWGVIKO 0QeA0g (CUVOALKT] AIIOTIINOL) T®V IAKT®V Y1d Td PEPT TOL TOPOD MOV IIAIPVOLV) KAt
amnédel§av 0Tl To0 KOWMVIKO 0QeNOG OITOLAOONIIOTE 100PPOIIiag etvat ToLAdyLoToV 3 /4 Popég To
BEATLOTO KOWVOVIKO OPeEN0G. ADTO petappadetat o éva @paypa 4/3 yid 1o KOoTog TG avapyiag,
T0 omoto eivat avotnpo. H epyaoia tev Johari and Tsitsiklis [2004] mopodotnoe petayeveotepn
¢pevva yla dANOLG PNYAVIOPOVG KATAVOHIG HOP®YV, Ol OO0l XPIOHOIIOI0DY Ola(POPETIKOVG
KAavOVveg KATAVONTG KAt AN POH®DV.

Mua npwtn Ipo@avr) peTNoL apopovoE To av etvat dvvatov va amnodeifovpe PeATiopeva
PPAYHATA Yl TO KOOTOG TG avapyiag aAAfovTag ToV avaloyko Kavova KATavopng, aid
datnpwvtag Tov Ao Kavova IANPOP®OV COPPOVA pE TOV omoio Kabe Xp1)0tng IANP®VEL TO
onjpa tov (yia evkolia, Oa avagépopaote oe TETO0DL £idovg pnyaviopov wg PYS). Ot Sanghavi
and Hajek [2004] amédei§av ot kavévag PYS pnyaviopog dev propet va metdyet KOOTOG T1)g
avapyiag Ka\vtepo tov 8/7, oxedlaocav pia coVAPTON KATAVONL|G I} OIIOLd IIETVXALVEL ADTO
TO QPAYHA Yla TNV MEPUITOON TOV OLO MAIKTI®OV, KAl édwoav 1oxvpeg evdeielg 0Tt éva Atyo
XePOTEPO Ppdypa toxvel yla avbaipeta moAAovg maixtes. Tomg éva aro ta mo anpoopeva
arroteAéopata eivat To 0Tt LIIAPXOLY TIPS ATIOOOTIKOL PN XAVIOHOL e KOOTOG NG avapyiag
1. Avtr) 1 avakaloyn) €ytve og Tpelg avesaptnteg epyaoieg amnod tovg Maheswaran and Basar
[2006], Yang and Hajek [2007], xat Johari and Tsitsiklis [2009]. O pnxaviopog tov Maheswaran
and Basar [2006] xpnotpomnotet avaloyikr) Katavopr] aANd d1apopeTikég IANPOES, EVR Ot pr)-
xaviopoti twv Johari and Tsitsiklis [2009] xat Yang and Hajek [2007] npooappolovv 1o yvooto
VCG vnodetypa oty neplrtoorn Pabpotov onpdtov Kat diatpéopmyv nopmv (Oeite emniong 1o
survey 1oL Johari [2007] ndave oe avtd ta anoteAéopata).

Edw, emKevtp®VORAOTE OTO IO PEAAIOTIKO OEVAPLO OITOL Kabe maiktng éxet evav idmTiko
IIPOBIIOAOYIOHO O 0II010G TIEPLOPILEL TO TTOCO TV XPIHAT®V IOV HIIOPEL VA TIANP®OEL KA, dpd,
neplopiCet kat tov xwpo te@v mbavev otpatnykev tov. Kabaog ot pnyaviopotl katavoprg mo-

pwV Oev €yovv dpeor mpooBaor oTtovg NPOBIOAOYIOHOVS, TO COVOAO TV ICOPPOII®V PITOPEl
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va aAAAdet HPAOTIKA KAl TO KOWVMVIKO TODG OPeN0g evdexeTal va elvat eSalpeTikd PIKPO O
ox€on pe 1o PeATioto Govatod, To omoio Oev OLOXETIETAL PE TIG OTPATIYIKEG TOV IAKIMV, TIG
IANPOEG TOVG, I TOLG IIPOVIIOAOYIOpOVG IOV propet va £xoov. Eva petpo anodoong to onoio
elvat mo KAataAAnAo yia aouTo T0 OeVAPLO ELVAL YVOOTO MG PEVOTO 0PeA0g (TIAPOVOLACTIKE ATIO
tovg Dobzinski and Paes Leme [2014] xat, aveSdptnta, ano tovg Syrgkanis and Tardos [2013])
KAl IPOKOITITeEL AAAACOVTAG AlyO TOV OPLOPO TOD KOWVOVIKOD 0PENODG. ZUYKEKPIHEVA, Yia Kdbe
IaiKTI), T0 PELOTO OPeAOG AapPavel LIIOYT TO EACY10TO PeTASD TG AIOTIPNOG TOL MAIKTL Y1
TO H€POG TOL IMOPOL IOV IALPVEL KAl TOL IPOBIIOAOY10H0D ToL. AKoAovbavTtag TV IpooPatn
epyaota twv Azar et al. [2017], xpnotiponotodpe tov 0po pevoto kootog THS avapyiag (LPoA, ya
ovvtoptia) ya va avagepfovpe 0to KOOTOG TG aAvapxiag @G Ipog To Pevoto O@elog, dnAady,
TOV AOYO TOD PEYLOTOD dLVATOD PELOTOL OPEAODG 08 OIIOLAOIIIOTE KATAOTAON TOL ALY VIO10o0

IIPOG TO EAAYLOTO PELOTO OPENOG O€ KATAOTAOT| 10OPPOIILAG.
A1l AnoteMéopata Kat TEXVIKEG

2T0X0G pag eivatl va PeNeT)OODHE 0AoDG TODG PIXCAVIOHODG KATAVOHL|G IOP®V KAl vd Ppoovpe
exetvov pe 1o KaAvtepo dvvato LPoA. Ta anmotehéopata pag vrrodetkvoouy pid OAOKANP®TIKA
OlaPopPETIKI) £1KOVA O OXEOT HE TNV MEPUTTOOT] OOV O IAIKTEG OeV £XOLV IIPOBIIOAOYIOPOVG.
Apxkd, deiyvoope éva kate gpaypa 2 — 1/n yua to LPoA kdbe pnxaviopod Katavopr)g mopav
yla n Iaikteg (OIO TOIKEG DITODECELG OXETIKA PE TIg OLVAPTI|OELG ATIOTIPNONG TOV IIAIKTMV KAt
TA XAPAKTNPLOTIKA TOV PIXAVIOR®V) TO OO0 AMOdeIKVDEL OTL OeV DIIAPYOLV MANP®S ATIOO0-
ol pryaviopot. Enetta, Setyvoope o1t o prxaviopog too Kelly éyet LPoA axptpaog 2 To omoio
etvat oxedov 1o kalvTtepo dovato, eve o pnxaviopog twv Sanghavi and Hajek (SH) éyet LPoA
100 pe 3. BeAtiopéva gpaypata ywa to LPoA etvat dovatd yia tnv nepintoorn 1oV H00 IatKTov.
Zxediafoope tov PYS pnyaviopo E2-PYS yia dvo naikteg o omotog éxet LPoA 1.792. Aoto 1o
epaypa etvat paAwota PEAToTo yia pua evpeia kAaon pnyaviopov. Emiong, oyxedialoope tov
pnxaviopo E2-SR ya dvo naixteg o onotog £xet LPoA to oAb 1.529 (oxedov xkalvtepo dovato
pe Bdon 1o kate epaypa 1.5 yia dvo nmaikteg) Kat ypropomnotet Mnpapég mov opi{ovrat aro
TOV AOYO T®V OHUATOV TV Haktov. Xtov [Tivaka A.1 pmopeite va Ppeite pia covoyn tov

AIIOTEAEOPATOV LA,

Ta anoteAéopata pag ekpetalAevovtat v Wtattepr) Sopr) TV At VIOI®V KAl I0OPPOI®V
Xelpotepng nepimtmong (wg mpog to LPoA). Artodeikvooupe 0Tt yia Kabe P Xaviopo KAatavour)g
nopwv, 1o Xepotepo LPoA napovolaletat oe OTLyplOTOIIA OIIOV Ot IALKTEG EXOVV YPAUUIKES HE

UETATOMON GLVAPTLOELg amtotipnong. Emumleov, OAot ot aikteg eKTOG eVOG £XOVV ITEMEPAOHPEVODG
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Mnxaviopog LPoA ZxOA0

oMot >2—1/n Aev orndapyoov nApmg arrodoTKol pnyaviopot

Kelly 2 Avotnpo gpaypa. Zxedov KaAdTtepog OLVATOG PNXAVIOHOG Yid 1
TIAiKTEG

SH 3 Avotnpo gpaypa. ITheov dev eivat kakvtepog oo Kelly

E2-PYS 1.792 Avotnpo gpaypa. Kaldtepog dvvatog PYS pnyaviopog pe xoidn
OLVAPTIN O KATAVOHNG Y 2 TIAIKTEG

E2-SR 1.529 2xedOV KaAvTepog SLVATOG PNXAVIOHROG Yia 2 IAiKTeg

Table A.1: Mnxaviopoi Kat OxeTiKd @PAypRaTd yid TO PeDOTO KOOoTog Tng avapyiag. Ta amote-

Aeopata avtd dnpootevtkay oty epyaota [Caragiannis and Voudouris, 2018].

IIPOBIIOAOYIOHODG KAl EMAEYODV OTPATIYIKEG O OITOLEG OLVEIIAYOVTAL 1TE PNOEVIKEG TIANPDLEG
elte MANP@PEG O1 OTI01EG elvat 10gg PIE TOLG TIPOBIIOAOYIOPODE TOVG, VM O HOVAIKOG ITAIKTNG e
AIePlOPLOTO IMPOBIIOAOYIOPO DIIOPBANAEL TO onpd mov pndevilel TNV IAPAY®YO TNG OPENELAG
To0L.

I'a to oevapto omov ot naikteg Oev £xovv mpovioAoylopovg, ot Johari and Tsitsiklis [2004]
angdegav évav avaloyo YAPAKTPLORO XEPOTePNG IIEPITTOONG Yia ToV prxaviopo too Kelly,
0 OTIOL0G £TELTA YEVIKEDTIKE Y1d OAODG TOLG PIXCAVIOHODG KATAVOHLG HOP®DV. ZOYKEKPIPHEVA, 1)
XEWPOTEPN MEPIITOOT elvatl OTAV OAOL O IALKTEG £XOVV YPAPHIKEG OLVAPTHOELG AOTipnong (pe
pndevikr) petatomor)) Kat vrroPaA\ovy orjpatd oL PndeviCoV TIG HAPAYDYOVS TV DPEAEIDV
TOVG. ZDYKPLTIKA, 0 O1KOG HAG XAPAKTNPLOROG XEWPOTEPNG MEPUTTMONG elval Mo MAoLO0g o8
dopr, kat 1 anodeiln Tov elvatl APKETA MO ITOADITAOKI).

O xapaktplopog mepiéxet 1001 MANPo@opia mov ta @pdaypatda yida 1o LPoA akolovboovv
oxeTkd evkoAa. To mo axkpato napdadetypa eivat 1 arrodeldn TOL KANDTEPOL PPAYHATOS PAG
yia tov pryaviopo tov Kelly, ) onota etvat poAig pepukég ypappés. Emtong, o xapaxtnplotipog
propet va yprnowpomnowdet yia t) oxediaon veov pnxaviopev. [a napdadetypa, o oxediaopog
Kat n avdaivon tov pnyxaviopev E2-PYS xat E2-SR ywa 6vo naikteg mpokoOIrtooy amnod arheg
dragpopikég eSlomoelg mpwtov Padpov, Tig omoieg Sev Oa priopovoape va avayveploovpe xopig
TOV YOAPAKTPLOPO pag. AKOHD, vIo oplopéveg mpodnobioelg (0nag, yia mapddetypd, Koiheg
OLVAPTHOELS KATAVOHI)G KAl KDPTEG OLVAPTIOELG TANPOH®V), HIIOPOLE va deiovpe avtopata
OTL Ta gpdypata yua to LPoA etvatl avotnpd, xopig va IapovoldooDHe KATIOW0 E101KO KAT®

epaypa (avr-napdadetypa).
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Zxetiky) PrpAoypapia

To pevoto O@elog éxetl peletn el mpoopata wg pétpo amodoong yia v oxediaon GAaindmv
pnxaviopwv [Dobzinski and Paes Leme, 2014, Lu and Xiao, 2015, 2017] kot yta tv avaioon
oovovaotikwv Walrasian tcoppommyv pe npotdnoloytopoog [Dughmi et al., 2016]. Emiong, éxet
xpnowpomnowmnOet amo toog Azar et al. [2017] yia trnv avalvor) ToL pevoTod KOOTODG TG avapyiag
o€ TavTOYpoveG dnpomnpaocteg PG TurS, Kat aro tov Voudouris [2018] yia dnponpaoieg

O¢oewv Oragrpiong.

Ot Caragiannis and Voudouris [2016] rjtav ot mpmtot mov amedei§av 0Tt To PeLOTO KOOTOG
g avapytiag oo pnyaviopod tov Kelly etvat otabepo. Zoykexpipéva, édetgav éva ave gpdaypa
2.78 xat eva Kat® gpaypa 2. Ovotaotikd, édw armodetkvdovpe KAt IAAL TO 1810 KAT® PPaypa pe
drapopeTikd Kat moAv mo evoragpepov tpomo. Ot Christodoulou et al. [2016b] BeAtimoav to ave
Ppaypa oe 2.618 KAt eMEKTEWVAV TA ATIOTEAECHATA OE £VA IO YEVIKO POVTEAO J1€ IIEPLOCOTEPOVS
nopovg. ITptv ano avtég Tig epyaoieg, ot Syrgkanis and Tardos [2013] £édet8av 0Tt TO KOWVOVIKO
OPeNOG 08 KATAOTAOL) 100PPOIILAG elvat To TOAD évag otabepog mapdyovtag Tov BEATIOTOD pev-
OTOL 0PENODG.

Ze avtibeon pe TG TEXVIKEG AVAADONG ITOL XPNOOIolov|e 0®, 1] AVAALOL TOL PnXd-
viopoo tov Kelly ano tovg Caragiannis and Voudouris [2016], Christodoulou et al. [2016b]
Kat Syrgkanis and Tardos [2013] afiomotet to mpotono smoothness [Roughgarden, 2015,
Roughgarden et al., 2017] xat Baoiletan ot @payr) g weetag kdbe maiktn amod v oeé-
Aeta oo Ba prropovoe va £xel av arekAve povopepmsg Kat vrePalde karmoto aio onpa. Ta
AIOTEAEOPATA ALTA LOXVOLV KAl YA IO YEVIKEG EVVOLEG 100PPOIIEG ONIMG Ol OLOXETILOPEVES
looppoIrieg Kat ot wopporieg kata Bayes-Nash. Ta LPoA @paypata pag oxdoov povo yia

apyeig wopporrieg katda Nash, al\d etvat mo oxopd Kat avotpd.
A2 Awapoppworn anoyewv

Edo xat aumveg, 1) 01apdppmot amopedv £Xel AITOTENEOEL AVTIKEIPEVO EPEDVAG O€ EMOTIHES OTIOG 1)
KOW®VIOAOY1d, TA OIKOVOHIKA, 1] PO Kabmg kat 1) emdnpoloyia. H diadoon kat viobetnon
TOL AtadIKTOOL Eel EMTPEYEL TNV IPOOPAT) AVOL0N TV KOWVOVIK®OV OIKTO®V, TA OIIoid £X00V
AettovpyoLV 0G péod S1dad001g IANPOPOPL®V O1 OTIOLEG VAL O ITOANEG IIEPUITMOELG EVEP YT TIKEG
Yld TOLG XPI|0TEG, AAAA OLXVA XPIOHOMIOOVVTAL KAl OTPATNYIKA aIIO COYKEKPIPIEVA HEPT) TA
onoia eAovV pe avTOV TOV TPOIIO VA METVXOLV TOVG IIPOCHIIIKOVG TOVG OTOX0VG. AVTEG Ot 1010-

TNTEG €XOLV MPOOPATA IIPOCEAKDOEL TO EVOLAPEPOV TV EPELVITOV TN TEXVITI)G VOI|HOOLVIG
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[Auletta et al., 2016, Schwind et al., 2015, Tsang and Larson, 2014] xabwg xat tng emotrpng tov
vroloylot®v yevikotepa [Bindel et al., 2015, Mossel and Tamuz, 2014, Olshevsky and Tsitsiklis,
2009], xat éxel 0dnynoet o avabemproelg TV KAAOIKOV HOVIEA®V yld SIapopPmor) aoyemV,

XPNOHOIIOI®VTAG £VVOleg Kat epyaleia tg Oewpiag [Tatyvimv.

Ot Friedkin and Johnsen [1990] nmpoomniafnoav va povtehomoujcoov v diadoorn) anoyemv
petadd atopmv 1mov aAANAEIdPovY PeTAld TOLG. ZOPPMVA HE TO POVTEAO TOLG, Kdbe atopo
€xel pa mpoo®Iki neroibdnon yua xdmoto Oepa oodrtnong xat exppadet Onpooimg Kdmota,
evdeXOPEVmG Va elvat Ola@opeTIKY] Ao Vv nernoidnor), amowr). Ot nernodr|oetg Kat ot anoyelg
AvVarnaplotOVTAl O Ipaypartikotl apifpot. Zoykekpipéva, n Aoyt evog atopov IPOKVOIITEL ATIO
TOV HE0O0 OPO T1)G IIPOOMIIKI|G TOL IENOIONONG KAl TOV AIOYEDV IOV EKPPALOLY T ATOPA OTOV

KOWV®VIKO TOL KOKAO (0 omoiog Oewpeitat otabepoq).

ITpoogata, ot Bindel et al. [2015] ¢det§av Ott avtr) 1 copITEPLPOP PIIOPEt Va epprvevdet
ratyvio-0empntikd wg e8¢ 0 p€00g OPOg PeTAdy g Ienoibnong Tov atopov Kat TOV AIOYe®V
IOV EKPPACOVTAL OTOV KOLV®VIKO TOL KOUKAO lvat ArmA®g PLd 0Tpatsyiky 1) omoid ehaytotornotel
£Va OLYKEKPIPEVO KOOTOG. ADTO TO KOOTOG OpICETdal @G pid TETPAY®VIKE] OLVAPTNOL) 1] oHola
elvat 101 pe TV OAIKI| arrootaot) g Armoyrng Tov ATopoL AIIo TV Hernoidnorn Tov aAAd KAt aro
TIG AIIOWYELG TTOV €KPPACOVTAL OTOV KOWVMVIKO TOL KOKAO, 0to teTpayavo. Kata pa évvoa, n
OTPATIYIKI] AUTI) COPIIEPLPOPC EXEL DG ATIOTEAEOPA ATIOWELG TTOL AKOAOLOOVV TNV IMAetoynPia
TOL KOW®MVIKOD KOKAOD.

OtBindel et al. [2015] Oempnoav oTatikd OTLYPIOTOIIA TOD DIIOKEIPEVOD KOWVMVIKOD HIKTOOL
Katvnédeoav 0T Aoy kade atopov ennpedetat arod OAO TOV KOWOVIKO TOL KOKAO. Q0T000,
ot npaypatikotta, kabwg ot anoyeig eSehicoovtat, ot avlp®Iiot teitvovy va napapAénoov
TG AIIOWELG IOV ELVAL PAKPLA ATIO TNV IPOORIIKI| TOLG Ienoibnon, akopn Kat av ek@pdlovral
aro Tovg KAADTEPOLS TovG Pilovg. Axkohovbwvtag avtr ) Aoy}, ot Bhawalkar et al. [2013]
vnebecav OTL 1) Ao eVOG ATOPOL 6APTATAL POVO ATIO VA HIKPO PEPOG TOV avOpOIOV oTovV
KOW®VIKO TOL KDKAO, TOLG oroiovg Kalovpe yeitoveg. Emopévmg, oto povtého tov Bhawalkar
etal. [2013], ) Stapoppmorn anoyemv ovv-eSeAiooeTat pe ) yettovid kdabe atopov, n omoia aro-
telettat ano ekelvoog Tovg avOpOIIONG TTOL £XOLV ATIOYELG APKETU KOVTA OtV nenoibnon too
atopov. Twpa, n anoyn moov ek@pddet Eva ATopo elvat pa oTpatyyikr) 1 onoia ehaytotonotet
KAl IAAL TV 101d TETPAY®VIKI OLVAPTNOL KOOTOLS, aAAA AapBavovtag bIoyrn) T YeLTovid Kat

OX1 OAOKA|PO TOV KOWV®VIKO KOKAO.

Tooo ot Bindel et al. [2015] 600 xat ot Bhawalkar et al. [2013] anédeiSav pikpd otabepa
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epaypata (9/8 xat 14, avtiotolya) yia To KOOTOG g avapyidag ToV OTpATyKOV A ViOmV
IOV IIPOKLIITOLV aIIo Tig LIIOBETELS T®V POVTEA®V TOLG. OLOLACTIKA, ALTA TA PPAYHATA DIIO-
detkvboLY OTL £va pn QLOLOAOYIKA PeYANO Pépog Tov MANBLopoL TV aviponwny exppdlovv
AIIOWeLG Ol OIOlEG elvat IIAPA MTOAD KOVTA OTLg Meno101)oelg Tovg. AOTLX®G, ALTO elvat OVOKOAO
VA TO MOTEYeL Kavelg 5edopevmv TV TO00 OLAPOPETIK®V KA, 08 TTOANEG IIEPUITMOOELS, AKPALDV
AIIOYE®V IOV eKPPACOVTAL OTA KOWVMVIKA OIKTLd, yid Iapadetypa, oe o0 N THOEIG OXETIKA ple

roAttikr) xat Opnoxeta.

AxolovBovpe To povtélo ovv-eSeAn g, Kat vrrobétovpe OTL 1) yettovid Kabe atopov opietat
amno ta k aropa mov eKkQpdfovy armoyelg ot OMolieg eVl Ot Mo KOVTIvEG oty menoibnon too.
Q0T000, AITOKALVOLE AIIO TOV OPLOPO TG TETPAYMDVIKI)G COVAPTIONG KOOTOG KA, avilfetmg,
Bewpoovpe o1l ta dropa npoorabovy va copfifacTodv mePLOoOTEPO e TOLG yeitoveg Tovg. Etot,
vrobétoope ot kabe atopo npoonadel va eAaylotomouw|oet ) §éy10Ty ArooTact) TG Aroyng
TOLG ATIO TNV IIPOCMIIKY TOL Iernoibnon Kat kabe Armoyng mov ekPEAeTAl oty YELTovid ToD.
DooKkd, avTég ot vrrobéoelg 0dyovV OTOV OPLOPO CTPATYIKMV ALY VIOI®YV, Ta oroia Kakovje

k-COF natyvidia, orov xabe dropo Aettovpyet o¢ Iaiktng.
A21 AmnoteAéopata Kat TEYVIKEG

ApxKda amodelkvOoupe d1aPopeg 1O10TITEG OXETIKA HE T YEDPETPIKI) OO TOV AMOWPEDV KAt
TV nenofnoewv oe aptyeig wopporieg katd Nash (kataotdoeig tovg matyviow omov kabe
MIAIKTNG EAAYLOTOIOLEL TO IPOOMITIKO TOLG KOOTOG, LITODETOVTAG OTL O LIIOAOUIOL ITAiKTEG Hev

Oa aA\adoovv Tig anowetg Tovg).

Xpnowponowwvtag Tig Sopikeg avtég 1010t 1eg, detyvoope ot viiapyovv k-COF nayvidia ta
omota Oev emodéyovtatl apryeig woopporrieg kata Nash. Emiong, amodeuvooope 0Tt akopn Kat
yla matyvidia 0mov dIApPYovLV LCOPPOIILES, 1] OLOTNTA TOLG PIIopPel va pnv eivat PEATIOT wg
IIPOG TO KOWVAVIKO KOOTOG (TO ODVOAIKO KOOTOG TV IAIKTROV), OelXVOVTAG OTL TO KOOTOG TG €0-
otafetag peyalwvet ypappikda g mpog to k. Ia myv edwi) nepimrtoon tov 1-COF nawyvidiov,
detyvoope 0Tt kabe teTolo matyvidt pmopet va avanapaotabel wg eva dtevfovopevo aKokAo
ypagnpa, oto omoio xabe aptyr|g woopporia katda Nash avtiotolyet oe éva povomndatt petaio
dvo ovykekppévav kKOpPov. Enopévag, to mpoPAnpa vnaping aptyev wooppommy kata Nash
Kabwg xat ta mpoPArjpata vIIoAOY10Op0D TG KAADTEPTG KA TI)G XEPOTEPTG LOOPPOITLAS (G IIPOG
TO KOW®VIKO KOOTOG) ivatl 10000VApa pe arAoDg DIIOAOYIOROVG EAAX 0TV KAl PEYL0T®V HO-

VOIIATIOV 08 AKDKAA YPAQPIIATA Ol OO0l HIIOPOVLV VA YiVOLYV 08 TOADGOVOHIKO XPOVO.
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PoA MPoA PoS Ynap&n/IoAom\oxkotnta
1 3 > 6 > 17/15  Aev vrdpyovv IAavtda 100pPOIIieg

2 € [18/5,12] > 24/5 > 8/7 Kalotepn/ xeypotepn) wooppomia oto P

>3 e[k+1,4k+1)] >k+2 > (k+1)/3 Avowto: mohonhokotnta yua k > 2

Table A.2: Ta anotehéeopata pag yia k-COF nayvida. O mivaxag mepiexet gpaypara yid 1o
KOOTOG g avapyiag og rmpog apyeig (PoA) xat piktég woopporieg (MPoA), yia to k60TOG g
evotabetag (PoS) xkabwg xat yia v drapdn Kat MOADIIAOKOTTA MG IIPOG Apityelg 100PPOIIiES.
[Tpogavag, kabe avm PAaypd yid To KOOTOG TG avapyidag eivat emiong ave @PAyHd Kat yid T0
KOoTog g evotdbetag. Ta amoteAéopata avtd éxoov Onpootevtet otV epyaota [Caragiannis

etal., 2017a].

TI'a yevika k-COF maiyvidia, OCOTIKOIIOIOVHE TV HOWOTTA TOV APLY®V 100PPOIKOV KATA
Nash (©g Ipog T0 KOWV®VIKO KOOTOG) 0TI XEPOTEPT] MEPUIT®OL), PPACCOVIAG TO KOOTOG TG
avapyiag. ZoyKeKPPEVA, IAPOLOLACOVHE AVE KAl KAT® QPAYHATA Y1d TO KOOTOG T1)G avapyiag
TV k-COF nayyvidiev (og IIpog aptyeig Kat PKTEG 100PPOIIiEG) TIOD ESAPTOVTAL YPAPHIK ATIO
10 k. 211G anodeilelg Tov dve @PAaypdtadVv Pag eEKPETANEDOPAOTE, [E 11 TETPIIPEVO TPOTIO, Te-
XVIKEG YPAPPLKOD IIPOYPARHATIOHOD Y1d VA PPASOVHE ATIO KAT® TO BEATIOTO KOV®VIKO KOOTOG.
I'a mv Bepelindn nepimmorn) tov 1-COF matyvidiav, anodeikvoovpe éva avotnpod gpdaypa 3
XPNOOIOI®VTAG €VA OVYKEKPIPEVO OXTHLA TIHOAOYT0NG OtV avalvor) pag. Ta anoteAéopata

pag oovowiCovtat otov [Tivaka A.2.
A22 Zyetkn piphoypagia

O DeGroot [1974] mpotetve éva HOVTEAO yid TNV HOVTENOIIOINOL) TG SIAPOPPMONG ATIOYEDV.
ZOPP@OVA [IE aDTO TO POVTENO, KADE ATOHO EVI|HEPAOVEL THV AIIOYI)] TOL PEO0® Htag Stadikaoiag
BePapopévoo peoov opov. Enetta, ot Friedkin and Johnsen [1990] avafempnoav to poviého tov
DeGroot vriof¢tovtag ott xabe atopo éxet pa WOtk nenoidnon xat ekgpadet pa (mbavmg
dagopetiki)) Snpooila dmoyn, 1) onoia eSaptatat TO00 aro v nenoifnon tov 00O Kat amo Tig
AmoYelg mov eKPPAfovy ot dvOpP@IIOL TOL KOWVMVIKOL Tov KokAov. [Tio mpoogarta, ot Bindel
et al. [2015] peAétnoav avto 1o poviého Kat amedeisav OTt 1 enavalnmtiki) avtr) dadikaoia
p€ooL Opov 0dnyel O AIOWYELG Ol OIIOIEG PITOPOVV VA EPPIVELTOLY (G 1] LOVADIKY] 100PPOIIia

evOg TIAtYViO1od SapopPmong Aroyemy.

OtBhawalkar et al. [2013] anékAwvav aro v vrmodeon 0Tt ot anoyelg ennpedafovtat arno OAo

TOV KOW®VIKO KOKAO, Kat Oemproav ta matyvidia ovv-e§eAidng moov oodntrjoape Napamnave,
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onov ot anoyetg alAafoov kabwg ot yertovieg Tov atopmv arlldfoov. Avto To povTtelo etvat
EVVOLONOYIKA OPO10 e ITporyovpeva Hovtéla oo peAetnet anod toog Hegselmann and Krause
[2002] xat Holme and Newman [2006], copgova pe ta orota kabe atopo éxet pia MapdapeTpo
EPITIOTOOLVNG € Kat Aapavel bImoyr PoOvo Toug avipmItong Iov eKeEAfOLY ATIOWELS Ol OIIOLEg
elvat € Kovtd otny renoidnorn Tov.

Mua ogipa ano npoogarteg epyaocieg fempody dakpitd povteda SIapOPPONG AIOYEDV He
dvadikég amoyetg. Ot Chierichetti et al. [2018] peAétnoav Staxpitd matyvidia mpoTipnong, OImov
Ol IENor0e1g KAt Ot arnoyelg etvat SuadIKeg KAt AMIAVINOAV ePOTIOELS OXETIKEG e TO KOOTOG
g evotabelag. Ia tétoov eidovg matyvidia, ot Auletta et al. [2015, 2017a] yapaktploav ta
KOW®VIKA OlKtoa O1ov 1) nernoifnon g pelovotntag propet va avadeiytel og 1) Aoy g
m\etovotntag, eve ot Auletta et al. [2017b] e§étacav av avtd ta amoteAéopata Propoovy va
erektabovv oe dMa povtéha. Ot Auletta et al. [2016] yevikevoav v kKAdon ToV dakpltov
A vVidl®Vv IPOTIPNOoNg OtV MEPUITOOT] OIIOL Ol IPOTIUN 0L TOV IAIKTOV VAl APKETA IO
roAorn\okeg. Télog, ot Bilo et al. [2016] enéxtetvav v kAdon oV Iatyvidiov oov-eSENENg oto

d1akptto povteho.

ZINV Oepintoon Omov LIAPYOLY MAPAIAV® Ao éva Bépata ovlrtnong, ot Jia et al. [2015]
npotevav kat avelvoav 1o Aeyopevo DeGroot-Friedkin povtélo yia v eS¢l evog diktdoo
EMPPOT|G HETASD TOV ATOP®V Ol OII0101 EKPPACOLY ATIOWELG Yid pid Oelpd amo Oepata, eve ot
Xu et al. [2015] mapovoiacav pia napariayr) oopeeva pe v onoia xabe dropo propet va
erav-vroloyioet To Bapog mmov Betel otV Aoy Tov, petd amno ovlrjtnon kabe Oéparog pe Tovg
avOp®IIong TOL KOWVAVIKOD TOL KOKAOD.

Mua a\\n ypappr) épeovag éxet emkevtpmbet ot pehétn g TaxLTTAg fe TV omoid éva ov-
otnpa ovykAivet oe pia otabepr| katdaotaor. Xe avtd ta nhaoioia, ot Etesami and Basar [2015]
peletnoav v dvvapkn) tov Hegselmann-Krause povtédov oov-e§éNlng kat eotiaoav otov
XPOVO TepPATIORoL yia dtagopeg mepurtwoelg. Opowa, ot Ferraioli et al. [2016] peAétnoav v
OOYKAL0I) AIIOKEVIPOPEVOV OOVAPIK®V O€ IEMEPAOPEVA At Vidia SlapopPaong anoyemv, pe
IIaiKTeg oL €YoV HOVO evav menepacpévo apldpo amod dadeoyeg anowetg. Ot Ferraioli and
Ventre [2017] peAétnoav tov polo mmov mailet ) KOW@VIKI) Mieon Kat édeiSav avotnpd gpay-
AT yla Tov XPOVO TEPUATIOROD 0TV IIOAD ONHAVTIKY] €101KI| IIEPUITOOT] OIIOD TO KOLVOVIKO

OlKTLO givat KAIKd.

Ot Das et al. [2014], botepa amod pia oelpd NADNKTLAK®DV ePOTUATONOYIOV, KATEANSaV 0T

Ta 0 YVOTd Oe@pnTikd povtéAa dev eSnyody evieAmg Ta MEPAPATIKA TOVG ATIOTEAECHATAL.
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‘Etot, napovoiacav éva véo avalvTiko HOVTENO yla Slapop@®aor) arnoyemy, Kat £detsav 1000
Oe@pnTIKa 000 KAl HEPAPATIKA IPOKATAPKTIKA AIIOTEAECPATA Y1a TV OOYKAL01) Kat TV dopr)
TOV AIIOWPEDV OTAV Ol XPI|OTEG EVIIHEPM®@VOLV TIG AIIOWYELG TOV EMAVANITIKA COPPOVA PE TO

povTélo Tovg.

O Chazelle [2012] peAétnoe kat aveAvoe COOTHPATA EMPPOTG, OITOL Kabe atopo napatnpet
T1g Torofeoieg T®V YELTOV®OV TOL Kat Kiveitat avaloywg. Ot Kempe et al. [2016] napovoiacav
éva HoVTENO yia avAalvon MOATIOTIKEG SUVAPIKNG, Kat eoTiacav otny alnAemidpaor petaio
eMAOYT|G Kt emppor|S. MeTald aA®V aroTeAeOp ATV, IAPOLOLACAY £VAV XAPAKTPLIORO T®V
otabep®V KATAOTACEMV KAt £de1§av OTL TO OLOT A OLYKALVEL IAVTA XWP1g va ennpedfetat amo
Vv apyr) katdotaor). Ot Gomez-Rodriguez et al. [2012] peAétnoav gatvopeva Otayvong Kat
petadotikr)g Stadoong minpogopiwv ot diktoa. Téhog, ot Kempe et al. [2015] peAétnoav eva
npoPAnpa PeAtiotonoinong yia TV PeYLIOTOIO 0L TG EMPPOT)G 08 KOWVMVIKA diKTLA, OITov
kdbe atopo propet va aro@aotioet va viobetrjoet pia 0éa avaloyd pe To 000t arod Tovg yei-
TOVeg TOL TNV £xouVv 1O1) vobetrioel. O oTOXOG elvat 1) eMAOYT] EVOG APYLKOD COVOAOL ATOP®V
10V L1OOeTOLY TNV 10¢a pe oKoIO va peytotornotndetl o TeAkog aplfpog T@V ATOP®VY IOV TOLG

akoAovBovv.
A.3 Metagopa droktnoiag

Ta mo yveootd npoPAnpata g vrodoyiotikyg korvovikng emAoyng [Brandt et al., 2016] apopovv
TNV arrod0TIKI] OLYX®VELOL] ATOPIK®V IIPOTIHIOE®V €Ml TV EVAAAKTIK®V eMAOY®V (01 OI101eg
ek@padovtat ooviOwg vrIo TN poP@PI) kaTaTASewV) ot pia LANOYIKY anogaor) [Caragiannis et al.,
2017,b, Procaccia et al., 2012, Skowron et al., 2016]. Ot mep1o00TEPOL PN XAVIOHOL IIOD DAOTIOLOLYV
) Swadikaoia ovyxavevong etvat deowaxoi Kat, dpa, dev eKPeTANEDOVTAL TIG OVYKEKPIIEVEG
apOpnTkég amotipnoelg 1@V atopwv. Emumiéov, Aoym SidQopmv yveOOTOV AIoTEAEOHATOV
advvaptag [Gibbard, 1973, Satterthwaite, 1975], tétotov eidovg pnyaviopot oev eivar pidarndeig.
AnAadr), KATIo101 ArId TOLG COPPETEXOVTEG EVOEXETAL VA £XOLV 1OXDPA KIVITPA VA IOV WPepata
OXETIKA L€ TIG IIPOTIHIOELG TOVG MOTE VA XEPAYMDYI)OOLY TOV HIXAVIOHO KAl VA TOV 001 y1)00vv
oto va em\efel pia eVAANAKTIKL €MAOYT) THV OIIOLd IIPOTIHOVYV IIEPLO0OTEPO (ATIO avTr) ITOL Oa

ereleye av ékeyav v ainbewa).

Avtifeta, 1 KAdon tov Aainbov apibunTikov pnyxaviopov exet amodeiytel 0Tt etvat TOAD
mo nm\ovota [Barbera et al., 1998, Feige and Tennenholtz, 2010, Freixas, 1984]. Mmopoovpe va

BeATiwoovpe TV OLVOALKTY] evNpEPLa TG KOW®VIAG, ASIONIOIOVTAG TIG EMUIIAEOV TIA)POPOpPLeg
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0L IePEXovV ot appntikeg atopikeg anotipnoelg [Cheng, 2016, Filos-Ratsikas and Miltersen,
2014, Guo and Conitzer, 2010]. Ot @t\aArOetg prnxaviopol oo xprolHOIIOLY YpHHaTa EXO0V
avalvbet extevag ot oxetikn) BipAoypagia, Kat ot pnyavicpotl IIov PeyloToIolovY TO KOV®-
VIKO O@elog exoov 1101 oxedtaotel yia Otdgopeg kKA daoelg mpoPAnpdrev [Nisan et al., 2007]. Eva
diaonpo tétoro mapadetypa etvat i) owkoyévewa tov VCG pnyaviopev [Clarke, 1971, Groves,
1973, Vickrey, 1961].

Q0T000, LIIAPYEL VA APKETA PEYANO OOVOAO MPOPANUATOV DPPIOIKHG KOWWVIKHG ETIAOYHS,
OTIOL 1] PETAPOPd XpNpAat®V Oev etvat dvvatr) yia KAmoto pépog tov mindovopov. Enopévag,
n oxedtaon pilalnbov, apibunTikov pnxaviopov etvat pia apketd moAvn\okn dtadikaota Kat
rIpérel va oovouaotovv ototyela oxedldong PNYAaVvIopaV e XPHHatd Kadmg Kot KOW®VIKIG
emAoy1g. Meletape tétolov €1dovg oevapla ota NAdiowd TG PETAPOPUS 1010KTNoiag, OIov
gxoope éva obvoAo mBavav ayopact®v pe XPNUATIKEG ATIOTIPIOELG YId Hd ETAPELA, EVR
DIIAPXEL KA £VA ODVOAO EWOIKRDV (IL.X., TO OLOIKNTIKO OOPPOVALO T1)G ETALPELCS) O OTIOIO0L EXOLV
anowyelg ya 1o oe motov Oa mpérnet teAikd va movAnOet 1) etatpeta. O otoX0g elvat va mdpovpe
TNV aro@aot) oL PEYIOTOIOLEL TO KOWVMVIKO OPeN0G, TO or1oio AapPavet vrmoyr) Tig apldpntikeg

AIIOTIHI0ELG TOOO TV AYOPAOT®V 000 KAl TOV EOTKMV.

ADTO 1O 0evdplo povtelomotel daPopeg evOlaPEPOLOEg MPAYRATIKEG MEPUIT®OeL. Mia
IPWTI EPAPHOYT] APOP TNV AIIOKPATIKOIIOUN 0T KPATIKOV IIEPLOVOIAK®MYV OTOLXEI®Y, OIIOL €Va
obVoAo MOAVHOV ayopaoteV eVOLAPEPETAL VA TA ATIOKTIOEL, EVR S1dQOPOL OPYAVIOHROL TOATOV
otoxevovv oto va eyyonovv ot n emhoyr) Oa etvat vnép tov moAttwv. [Tapopoteg mepurtwoetg
HETAPOPAG 100K TNOLAG IIPOKDIITOLY Katd Ty avdbeon abAntikmv dtopyaveoemv onag to ITa-
yxoopto KoneA\o modoogaipov kat ot ONopmaxot aymveg, 0rov Aapfdvovtat vrmoyn) T00o ot
IIPOOPOPEG TOV eVOLAPEPOPEVOV DOPYAVAOTOV (XDPES) OO0 KAl Ol OLOTACELS TOV AVTIOTOLY®V

downtikev apyxov (.. FIFA.com, 2018).
A31 AmnoteAéopata Kat TEXVIKEG

v Awatpipr) aotr) eotialoope oto BepeAtmdeg oevaptlo omov £xovpe dvo mbavovg ayopaoteg
A xat B, kat évav eldiko pe aplOpnTikég armoTiroetg yia Tig TPeLg EVAANAKTIKES EMAOYEG TOL VA
IIOLAT|0OVE OTOV ayopaoty A, va movArjcovpe otov B, 1) va pnv novArjcovpe kabooo (otv
orolia nepint®orn 1 petagopd wioktnoiag dev npayparonoteitat). Eva pnyaviopog déxetat wg
€10000 TIG IIPOOPOPEG TOV AYOPAOT®V KAOMG KAl TI§ AMOTIHI0ELG TOL e1O1KOD, KAl Arto@aoilet
Pila evaAAaKTIKn @g to aroteAeopa. ['evikd, ol pryaviopot etvat mbavotikoi KAt T0 ArIoTéNeopa

EMALYETAL OOPPOVA e pid MOavoTiky Katavopr) (1) Aotapia) emt tov TpdV eVAANAKTIK®OV.

160



KA\don pnxaviopov Aoyog mIpooéyytong  ZxOAo

®eolaxot 1.5 pnxaviopoit EOM, BOM
KaAvTepo dovato gppaypa
Avegap ol TV IPOOPOP®V 1.377 pnxaviopog BIM
KaA0OTePOg dvvatog
Avelaptntot Tov e191KoD 1.343 pnxaviopog EIM
KaAOTepog dvvatog
IIpotomo 1.25 mOavoTikog pnyaviopog R
KaAvtepog always-sell
1.618 VIETEPUIVIOTIKOG PN XaAViopog D
KAaAOTEPOG VIEPHLVIOTIKOG
‘OMot 1.14 KAT® QPAypa

Table A.3: ITepiAnyn TV anoteAeopdtav pag. Asite v epyaocia [Caragiannis et al., 2018].

Oewpovdpe PrAadnberg prxaviopovg ot oroiot aSlomolovy dlagopeTikd emtneda yvoong. ITio
OVLYKEKPIpPEVA, peletdpe Beoiakovs, ave§ApTnTong TV MTPOOPOPMV, ave§ApTHTODS TOD £101K0D, KAOMS
Kt Yevikoog @\aA1)fetg pnxaviopovg ot oroiot Aapfavoov vroyn 11§ aroTIuioelg T000 TV ayo-
PACTOV 000 kai Tov €101k0D. YTIOOETOLOHE VTETEPUIVIOTIKODS KAt mbavoTikodg PNXAVIOROUG, EVR MG
PETPO ammoO001g XPNOOIIOIOV}HE TV €VVOLld TOD AOYOD IIPOOEYYIONG OG IIPOG TO KOLVOVIKO
O@elog, To omoio AapPdvetl vrIOYn TIg AMIOTIPIOELG TOOO TOV AYOPAOT®V 000 KAt TOL £1OKOD.
I'a xabe kKAdorn pnxaviopmv, armodelkvOOLHE KATK PPAYHAT Y1 TOV AOYO IIPOOEYY10NG OA®DV
TOV OXETIKOV HNXCAVIOPOV KAt eviomi{ovpe Tov KaAvtepo petalo avtav. Ta anotedéopara pag
ovvoytilovtat otov [Tivaka A.3.

Ot texvikég pag otnpifovtat oto yeyovog ott kKabe pnyaviopog pmopet va Oewpndetl og pia
Aotapia n onota avadetet mOavotnteg oTig eVAAAAKTikeg ermhoyeg (A, B, 1§ kavévag aro tovg
dvo) mov opilovtat amod Vv €l0odo oL APEXOLV O e1OKOG Kat ot ayopaotés. H yevikr) pag
OTPATNYIKI] YA VA EVIOIICOL|E TOV KAADTEPO dovatd GIAaANOn pnxaviopo yia kabe xk\dor)
oo Bewpoovpe eivan 1) e€ng. a xabe mbavo Aoyo mpooéyyiong, mpwta xapaktnpifoope tov
XOPO TV @UNAANOnV prnxaviopov vroloyifovtag KataAAnAa gpaypata yia tig mbavotnteg
1oL prropet va optoet 1) avtiototyn Aotapia. Enetta, vrmoAoyioope tov eAdyioto dovatd Aoyo

IIPOOEYY10TG ITOL OPilet EVay ePIKTO (OX1 KEVO) XOPO PIAAANO®V PNYaVIOH®OV.
A3.2 Zyxetikn fpAoypagia

e Pua ayopd, 01 ODYX®VEDOELS KAl Ol AYOPEG ETALPELMV HAL{OVV KEVIPIKO PONO OTOV AVIAY®DVI-
OpO petadp ONPOCimV KAl IOOTIK®OV 0PYAVIOP®V. YIIAPXOOV AIAeTeG eVOeielg OTL I peTagopd
g Woktnoiag pa etatpeiag ennpedfel CNPAVTIKA TV OKOVOHLA TO00 TV epyalopévev 000

Kal IOV Katavale@tov g [Auerbach, 2008, Hitt et al., 2001]. Zopgava pe dedopéva tng Ev-

161



ponawkng Evoong, éyoov npaypatonowmet meprooodtepeg ano 6500 ovyymvevoetg amod to 1990,
EV® £XODV OPLOTEL ALOTNPOL KAVOVEG TIOD ETTOVV TO IIMG TETOLOV €1DOVG OLYY®VELOELG TPETIEL

va yivovrat.

To povtelo pag etvat éva OTLYHLOTOIIO P00y Y10TIKNG OYEOIATHS UIYAVIOU®OV HE XPLHATA
[Nisan and Ronen, 2001] xat xopig xprjpata [Procaccia and Tennenholtz, 2013], n omoia
éxet mpotabel yla mpoPAnparta BeAtiotonoinong vmo avotPovg IEPLoPtopods @ aindetag. O
Myerson [1981] amedeile avong Kat avaykaiong meptoplopos yia GUAalrfelg pnyaviopong
He Xprpata (VIETEPUIVIOTIKODG ) MIOAVOTIKODG). ADTOG 0 XAPAKTPIONOG [AG EMITPEIIEL VA PNV
aoxoAnbobpe pe ocovapToelg TANPOE®V Yid TV TAELPA TOV AYOPAOT®V, Kabwg avtég etvat
KaAag oplopéveg dedopévav tov mbavotrtov emAoyrs. Emiong, pag édwoe OAa ta anapattta
epyaleila ®OTE va EMXEIPPATOAOYI)OOVHE OXETIKA PE TV dopr) T@V GIAAANO®V PnXaviop®v

XOPIg xprjpata amo v IAevPd To £191KOD.

I'a mpoPArjpata 0mmov pIopovv va XPnotponondody XPrjpatd, 0 YVOOTOS HIXAVIOHOG
VCG [Clarke, 1971, Groves, 1973, Vickrey, 1961] éxet pepuxég ToAd onpavitikég 1010t Teg: etvat
VTIETEPHIVIOTIKOG, GIAAATONG, KAl PEYLIOTOIIOEL TO KOWVOVIKO O@eNog. 01000, 0nng eidape Kat
IIPONYOLEV®S, OTO LPPOKO POVTENO OXediaong P XaVIop®V IToL fempodpe edw, Oa mpémet va
AdPoope LIIOWT) Kt TI AMIOTI|IOELg TOL £101KoV. Enmopevmg, o pnyaviopog VCG dev etvat mieov
PUaAnOng ovte PeATIoToG. ATIO TV IAEDP TOL 101KV, ot PUNaAOelg prxaviopol propovv
va Bewpnbodyv wg @haindeig kavoveg Yyrnpopopiag. ADOTLX®DG, TOAD YVOOTA AMIOTENEOPATA
advvaptag [Gibbard, 1973, Satterthwaite, 1975] meplropifoov v KAAOL TOV VIETEPUIVIOTIKOV

PUaANO®V Kavovev Yyneopoplag povo oe O1KTaTopIKovs PN aviopovs.

Avtifeta, n KAaon ToV mOavoTik®v Kavovav Pneopopiag eivat mMAovoloTepr) Kat mePLEyet
Aoykovg @Aalrfeilg kavoveg ot orrotot Oev etvat diktatopikot. O Gibbard [1977] xapaktrpioe
TNV KAJO1) ToV 0e01akav MOavoTiKaV Kavovev, alAd dev eivat akOpn yVOOTO av DIIAPXELEVag
IT10 YEVIKOG XAPAKTHPLOPOG yid OAODG TOLg aptdpntikodg kavoveg. ITapa moAleg epyaoteg otnv
KAAO1KI) OIKOVOHLKY] PpAtoypagia kabwg Kat oty avtioTtolyr) 1§ EMOTHHNG TV DIIOAOY10T®V
gxoov a@lepmbei oty oxediaon U\ainbov apldunTkeOv Kavoveov Kadmg Kat otny armodetdn)
dopkmv wotteV yia neploptopéveg kKAaoets. O Gibbard [1978] anédeie évav xapaktnplopo
0 0II010g oY VEL LOVO Y1 XOPODG SIAKPLTOV OTPATYIK®YV, eve apyotepa o Hylland [1980] arré-
de1le 0T KON TV QUNaAnOmVv pnxaviop®y mov eivat arnodotikotl katd Pareto avayetat otnv

KAJO1) TV MOAVOTIKOV IKTATOPIKAOV KAVOVAOV.

O Freixas [1984] xpnowponoinoe v pedodo tov dtagopmv [Laffont and Maskin, 1980] yia
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va oxediaoet pia KAAon @UAaAnfmv pnXaviop®y 1 ooid OVOLdoTIKA Xapaxktnpilet v KAdon
T®V (60O POPEC) MAPAYDYIOHOV (EITL DITOHACTHATOV TOL XDPOL AIIOTIHIOEMV) HNXCAVIOH®V.
O xa\btepog PUAaAONg aveSapTNTOG-TOV-IIPOCPOPOV PNXAVIOP®V MOV IIpoTeivovupe propet
va Bewpnbet wg évag pnyxaviopog avtrg g kAdong. Enetta, ot Barbera et al. [1998] é6ei§av ot
ondapxovv moAlot @ualrifelg pnyaviopol ot oroiot 8ev AVIKOLY 0TI KAAOELG TIOD peAétnoe
o Freixas [1984]. Axopn), ot Feige and Tennenholtz [2010] oxediacav pia kAdon aptOpntkov
PUNaANOmV pnXaviopaV yia va yng@oeopo povo, orov ot mbavotnteg emhoyng opifovtat amo
ODYKEKPIPEVA ITOADOVOHA.

To mpoPAnpa g PEYI0TONOiN0Ng TOL KOVMVIKOL 0PEAOVG XY®PIg Xprjpata éxet pehetnOet oe
TOANAIIAEG EPYAOIEG, TOOO Y1 YEVIKA HOVTEAd KOWV®VIKNG ermhoyng [Bhaskar et al., 2018, Filos-
Ratsikas and Miltersen, 2014] 600 xat yia e101KEG MEPUITOOELG OTIMG IIPOPAI HATA TAIPLACHATOV
katkatavopngnopwv [Cheng, 2016, Filos-Ratsikas et al., 2014, Guo and Conitzer, 2010]. Opowa
pe epag, ot Filos-Ratsikas and Miltersen [2014] xpnotpomnolovv @guAalnfelg prnxaviopovg yia
&va Yneoeopo moTe va MeTOXOLY BeATIOHEVEG £yyDIIOElg Artod0ong. 0TO00, 1 IAPOLOLA TOV
ayopaoT®V JLaKPivel ONUAVTIKA TO HOVTENO Pag Ao TO O1KO TOLG (OIIMG KAl arId TA POVTEAT
AV OXETIKDV EPYAOLDY).

Miua adM\n oxetikn) evvola eivat avt) g 1apauopeaons TV (p1 @Uaindmv) pnyaviopov
ot orotot Aettovpyodv vmod neploptopévr(Beoraxr)) mAnpo@opnon [Anshelevich et al., 2015,
Boutilier et al., 2015, Caragiannis et al., 2017b, Caragiannis and Procaccia, 2011, Caragiannis
et al., 2016]. Av kat i ENAewyn TANPOPOPNONG EXEL ATIOTEAEOEL EVAV TIEPLOPLOTIKO IAPAYOVTA
Yl KATIOWI IO Ta AIIOTEAEoPATa pag, eotialovpe Kupiog oe aptOpnTikodg pxaviopong yia

TOVG or1oiovg 1 @UNaArBeia eivat o PACIKOG EPLOPLOPRAG.
A4 Aocopperpia mAnpo@opiag yla PEYLOTONOiN 01 €000V

H expetd\\evon aooppeTplov otV DANPoQOpn o) elvat £va avIikeipevo ¢pevvag oo fexivnoe
ano v npotornoplaxr epyaoia tov Akerlof [1970] o onoiog peAétnoe téTola Qpaivopeva otnv
Aeyopevn ayopad TV Aepoviov. YIobeote pia ayopd avTOKIVI|TOV 1) OMOld MEPLEXEL ADTOKIVITA
oynAng mowdTtntag (ta omoid eltvat yvootd g poddKiva) Kadmg Kat yapnArg oot tag oo
ep@avifoov mpoPAnpata petd Vv TeAKI] TOLG ayopd (T OIoid elval yv®OTd @G Aepovia). Xe
Hta TETola ayopd, 0 I®ANTIG EXEL APKETA M0 akPlPr) TANPOPOPN 0L OXETIKA HE TV IO Ta
TOV ALTOKIVI|T®V, EV® Ol AYOPAOTEG OEV PHITOPOLV VA SeEX®PLOOLY TA POOAKIVA AIIO TA AEHOVLdL.

Enopévmg, mpokorrtet éva evolapépov IpoPAnpa oTpatnyiki)g arno@aong aro Vv IAeDPd To0
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HI®OANTI] P€ OKOIIO VA PPel TOV KAADTEPO SLVATO TPOMO WOTE VA EKPETANAEDTEL TV KATAOTAON)
Kat va 0¢oet oypnAoTepeg TIPS yid Ta avToKivita. Avapevopeva, 1) epyaotia too Akerlof oxetikda
HE TNV AOLPPETPIKT TANPOPOPION ED®OE TO EVALOPA Y1d MEPALTEP® £PELVA OTNV MIEPLOXT] TN
owovopkng Bewptlag [Crawford and Sobel, 1982, Levin and Milgrom, 2010, Milgrom, 2010,
Milgrom and Weber, 1982] xat, mpoo@atd, otV emotpn 1oV vrroAoytotev [Dughmi, 2014,
Emek et al., 2012, Ghosh et al., 2007, Guo and Deligkas, 2013, Miltersen and Sheffet, 2012].

AxolovBovpe v epyaoia tov Alon et al. [2013] xat eotidovpe oe mMOAVOTIKEG TOANOELG
TOIIOL ArodeCOL 1] armeppuye, OIOL LIIAPYOLY M avTikeipeva Kat n mbavotl ayopaotég. Kdabe
AyOopPaoTH|§ £XEL A ATIOTIPNON yid Kdbe avTikeipevo, Kat vrmodetovpe OTL yevika dev yvopilet
NV dIAPSH TEV NGOV ayopaoT®V Kl TOV AIOTIHNCEDV TOVG. ZOPPHOVA He pia mMOavoTikn
KATAVOML), 1] @UON emAéyel Toxaia éva povadiko avtikeipevo mpog nAnor). Enetta, o nowAntg
rpooeyyilet Tov ayopaotr) pe T PeyaAdTePI) AMIOTI|N O KAl TOV IPOOPEPEL TO AVTIKEIHEVO O
Tpn) ion pe TV anotipnorn Tov yid To avtikeipevo. Eva cuykekpipevo oTttyptotono avtobd Tov
oevapiov Ba pmopovoe va etvat 1o &g T AVIIKEIPEVA avTloTolyovv oe Aeelg kAetdud Kat ot
mbavol ayopaotég avtiotoryovv oe Stapnpiotes. Kabe dragpnpiotrg xet pla amotipnon yua
ke AéCn) kAe1di 1) ormoia avarrapilotd 1o PEyloTo 00O XPNHAT®V 0D etvat Stabéotpog va mhn-
PMOEL TIPOKELPEVOD Va deopedoel ToV Xwpo Otagrpong mmov divetatl otav yivetat avadrtorn)
g ovyKekppevng Aédng kAetdl. H @oon avtiotolyel otovg xpr)oteg mov KAavooyv avadntroetg,
EV® O TIOANTI)G AVTIOTOLXEL 0TIV pr)avi) avadrtnong, 1 oroia 0eopedel TOV XOPO diagnjpiong

avaloya pe v Aedn xkAe1d Kat oToxedeL 0TI HEYIOTOIOW 01 T®V £000MV TNG.

Mrmopet va o ToAnNTrg va eKpetallenTel To yeyovog ot Stabetet mo akpiPr) mAnpo@opnon
OXETIKA P T AVTIKELPEVA IPOG IMANOL) O¢ 0XE0T) 1€ Toug MBAVOoDg ayopaoTéS; ZOYKEKPIHEVA,
1] dOLPPETPia MANPOPOPIAG IIPOKVITTEL ATIO TO YEYOVOG OTL 0 MOANTIG YVopilel To avtikeipevo
IOV emAéyet 1) pUOT) TOX AL, EV® Ot ayopaotég Oev 1o yvapifovv. Ma mbavr mpooéyyton etvat
0 I®AINTIG Va propet va opioet &va oXHa ONpATOV avaloyd pe tov ayopaotr). AnAadr), yia
kabe ayopaotr), 0 HwANTIG PIIopet va xmpioet Ta avikeipeva oe ava dvo aveSaptnta obvola
Kat va dnwoet avtv v dapépion otov ayopaotr). ['ia napadetypa, n pnyavr) avadl)nong
Oa pmopovoe va opadomnoujoet padi cvykekpipeveg AeSetg kAeldwd ot omoieg ovoyeti{ovtat 1)
Ha pe v alAn. Metd v toyala emAoyr) g gvonG, 0 TOANTHG PIIOPEL VA ATTOKAANDYEL OTOV
kabe ayopaotr) v opdada Mov MePLEXEL TO AVTIKELPEVO, £TOL MOTE VA TOL EMTPEYEL VA EMAV-

LIIOAOYI0EL TNV AIIOTIUNOL) TOV YA TV Opdadd avTtr).

Ot Alon et al. [2013] mapovoiacayv 1o mpOPANUA U-OOUUETPIKNS O1apuépiong mrivaka [1e OKOIIO
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Va HOVTEAOIIOW|O0LY TO IMPOPANHA TG PEYIOTONOINO0NG E000®V O M®ALOELG TOIOL ATI0OESOD
i aréppwye. Ta ottyplotona tov mpoPAnpatog amotedodvrat amo évav n x m mivaka A pe
H1-OPVITIKEG EYYPAPEG KAt [Lar MOAVOTIKI) KATAVOL) p €Ml TOV OTHADV ToL. Ataxkpivoope d0o
MEPUITMOELG Y1d TV MOAVOTIKI] KATAVOHT €I TV OTHADV TOV IIVAKA £10000D, AVANOYd HE TO
av eivat opotopop@n 1) pn-opotopopen. Eva oxnua diapépiong B = (B, ..., By) yua tov mivaka
A anotelettat ano pua Stapépion B; Tov ovbvolov [m] yia kabe ypappr) ¢ oo A. Zoykekpipéva,
10 B; etvat pia ovAAoy1) 1 ortota artoteheitat amo k;, avda dvo aveaptnta, vrroovvola B, C [m)]
(pe 1 < k < k;) éto1 @ote U’,zizl Bjj, = [m]. Mmopoopue va gavtaoctovpe kabe dwapépion B; @g
évav teAeoTr) OpNaloOTTag 0 01oiog Opd MAV® OTIG EYYPAPES TG YPARHLS ¢ Kat aAAAlel Tig TIpEg
TODG OTNV AVAPEVOHEVT] TIHT] TOL DIIOCLVOAODL Olapéplong oto omoio avrkovy. Tomkd, 1) opaln

TIUY pag eyypagng (i, j) tétowa oote j € By, opietal og

B _ 2teny Pr A

Y 2reBy, Pt

[Mapatnpriote 0Tt OAeg oL eyYPAPES (i, j) P j € By €xoov v id1a opalr] tipr). Aedopévoo evog
oxfpatog Stapépiong B To omoto covendyetat évav opald mivaxa AL, n riun Siapépiong opiletan

®G 1] AVApEVOPEVT PEYIOTH eyypar] oTig oth\eg oo A, dnhabdn,

vB(A,p) = Z pj-m?xAg.

j€lm]
2KOTOgG Tov IPOPANpatog elvat 0 DIIOAOYIOPOG £VOG OXTjpatog dapepilong B €tol mote 1) T
Stapépiong v (A, p) va peyrotonoteitat.

H oy¢on tov npoPArjpatog pn-ooppetpikrg Stapéplong pe to IpOoPAnNpa peyloTonoinong
€000mV 0g M®ANoelg TOIIOL ArtodECoL 1) arEppuye etvat 1) e€rig: ot oTrAeg TOL Mivakda 10000V
AVTIOTOLYODV O€ AVTIKEIHEVA, Ol YPAPHEG AVTIOTOLXODV OTOVG IMOAVODG ayopaoTEg, KAt 1) T
g eyYPAPr|S (7, j) AVTIOTOLXEL OTNV AIIOTIUNOL) TOL AyOoPAoTr) ¢ Y1d TO AVTIKeipevo j. Metd
SlapEplon T®V AVTIKELPEV®V O€ DIIOODVOAC Y1d £VA CLUYKEKPIEVO AYOPAOTE), ] OPAAL] TUHL) EVOG
DIIOCLVOAOL AVTIOTOKEL OTNV AVAPEVOHEVT] ATIOTI[I 01 TOL AYOPAOTH) Yid KAOe avTikeipevo ton
ODYKEKPIPEVOL bIIOCLVOAOL. TéNog, N Tur) Srapéplong avtiotoyel ota é00da MoL avapévetat

va &yl 0 NOANTL|G.
A41 Anotedéopata Kat TEXVIKEG

Metalo aMev anoteheopatmv, ot Alon et al. [2013] amédeiav ot To npoPAnpa eivar APX-

hard axopn xat ywa myv nepintoon omov o mivaxag mepéxet doadikég tipég, kat oxediaoav
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évav 0.563- xat évav 1/13-1mpooeyylotiko akyoptdpo yia Tig mePUITOOELS OOV 1) MOAVOTIKI)
KATAVOHT) €Il T®V OTHAGDV TOL MIVAKJ EIVAl OPOIOPOP@N KAl UN-OpolOpop@n, avtiototyd. Bek-
TI®VOLHE ONPavTKd Kat ta dvo avtd anotedéopatd. [Tapovotaloope évav 9/10-1pooeyyloTiko
alyoppo yia opotopop@eg mbavotikeg Katavoues, kabaog kat évav (1 — 1/e)-mpooeyylotiko
alyopdpo yia pn-opotopop@eg mOavotikég Katavopes. To cOVOANO aDTOV TRV AIIOTEAEOPATOV

éxoov dnpootevtel otV epyaocia [Abed et al., 2018].

I'a v opotopop@n nepint®or), 0 alyoppog pag mPmTA KAADIITEL TIG OTHAEG TIOV EXOVV
TOVAJXOTOV €VAV A000, KAt EIMETA TAlPLACeL p1e AIANOTO TPOIIO TI§ OTHAEG IIOD MEPEXOVV POVO
Pndevikd pe dooovg oe OLYKeKPLpéveg ypappés. H avalvon avtoo tov alyopibpov etvat eSat-
petikd evOtagépovoda Kabmg, mapd 1o yeyovog 0Tt 0 alyopdpog etvat apty®g oovOLAOTIKOG,
EKPETANAEDETAL TEXVIKEG YPAPPKOD IIPOYPARHPATIONOD KAt duikoTnTag.

I'a v yevikn) pn-opotopop@n) nepint®or), eEKPETANAEDOPAOTE T 0XE0T) TOL IPOPAPATOg
H1-OOPPETPIKNG Otapeptong SLAdKOL Iivaka pe To IPOPANPA HEYIOTOIOU0NG KOW®MVIKOD
0PENODG pe KOIAEG OLVAPTHOELG ATIOTIPNONG, KAl XPIOHOIIOI00HE YVOOTOLG alyopibpovg amod
) oxetkn) PipAoypagia. ITpota codnrape v mbavr) epappoyr) evog armhob armnotoo 1/2-
IIPOOEYYOTIKOD alyopibpov, o omoiog éxet peletnOet amo tovog Lehmann et al. [2006]. Enetta,
epappofoope tov opald daminoto (1 — 1/e)-rpooeyytotikd alyopdpo too Vondrak [2008].

210 IpOPANPa PeY10TOOoiN01G KOW®MVIKOD 0@PENOLG e KOlAeg oLVAPTHOELS, O alyOptOpog
tov Vondrak etvat o kaAdtepog OLVATOG OTO POVTENO EPMTPATOV AIIOTIHNONG, OIIOD €XOVHE
1pooBaon oe éva oracle oo ATIAVTIAEL YPI)YOPd O EPWTIOELG OXETIKA e TIG AMOTIHI0ELG TOV
ayopaotmV yia ovykekpikéva ovvola avtikelpévov [Khot et al., 2008]. Ot Feige and Vondrak
[2010] edetgav ot vrmapyovv BeAtiwpévot (1 — 1/e + €)-mpooeyylotikol akyoptdpot yia To mo
10XVPO POVTEND EPOTPATOV AIIALTNONG, OIIOL £xovje Ipooaon oe éva oracle mov aravtdet
YPLYOPd 08 EPWTNOELG OXETIKA HE TO TIOL0 OLVOAO AVTIKEIPEV®V IIETOXALVEL OLYKEKPTPEVT] ATIO-
tipnon ywa évav ayopaotr). Zo{nTtdpe v Oovatotnta epappoyng tétowyv akyopibpwv yia to
IPOPANpA P1)-COPPETPIKTG OLAPEPLONG HIVAKA KAt IAPATNPOVHE OTL 1) AIICVINOL) EPATHATOV

anattnong eivat NP-hard yevikd.
A4.2 Zyxetikn fpAoypagia

[Tépa amo v dvadikn) nepimtmor), ot Alon et al. [2013] peAétnoav emiong Kat TV IO YeVIKY
IIEPUIT®OL) TOL TIPOPANIATOG P1-OVPHETPIKI|G OLAPEPIONG MIVAKA OIIOV O IMVAKAG AaroteAeital

Ao pn-apviTIKoLG IPAyHaTikovg apldpovg, kat napovoiaocayv évav 1/2- kat evav Q(1/log m)-
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IIPOOEYYIOTIKO aAyoplOpo yla opolopop@eg Kat pn-opotopop@eg mbavotikeg katavopes. H
KOwT)] 10¢a T®V alyopiOpmVv elvat o eVIOmOopog evOg ODVOAOL EYYPAPOV e PEYANEG TIHEG TO
oroto propet va opadonowm et padt pe aAAeg eyypa@ég oL MePEXOLY APKETA PUKPEG TLEG £TOL
®ote va avdnbet 1] OLVOAIKI] TOLG IIPOOPOPA OTNV TIHL| dLApPEPLONG.

H mbavr| povtedomoinon tov IpoPArjpatog HeyloTOIoinong e000mV 08 IMALOELG TOIIOD
arodeov 1) ameppye aro to DPOPANpEA PN-OLPHETPIKTG dapépiong mivaka, amnotehel pepPog
HOG YPAPHIG €PELVAG 1) OIIOLA PEAETA TNV EMIIT®OI TG ] OOPHETPIKIG A POPOPOLG 0TV
o0t Td TV ayopav. Onmg cvdntroape kat napandave, o Akerlof [1970] rjitav o npwtog mov
IIAPOVOLACE PLA TOIILKT| AVAADOL) Y1d TNV AyOPd TOV AEHOVIRV, OTIOD 0 IOANTIG EXEL IO AKPPT)

AN POPOPNOT YL TV HOWOTNTA TOV IIPOLOVI®V 08 OXE0T) HE TOLG MOAaVOoLS ayoPAOTES.

H 16¢a tov va diapeploovpe To OOVOAO TOV AVTIKEIPEVOV O OLaPOPETIKEG OpAadeg yia Kabe
ayopaotr) KAt DOTEPA VA eVIIEPOOOLHE O Kabe ayopaotr) v opdoa oL MePIExXet TO TOXALO0
avtikeipevo, mpoépyetat amno v pebodo otpartnyixi)g petadoong mnpopoptov tov Crawford
and Sobel [1982], 6m1ov 0 TOANTI|G €xel TANPOPOPLEG OXETIKA HE TIG ATIOTIHIOELG TOV AYOPAOT®Y,
KA1 OTPATIYIKA OTOXEDEL OTO VA EKPETANNEDTEL ADTO TO IAEOVEKTIILA WOTE VA PEYIOTOIIOW|OEL T
¢o00a tov. [a va dovAéwet pia TETola MPOoLy Y10 OP®G, MPEMIEL VA DIIODECOVIE TOV EMUTAEOV
IIEPLOPLOPO OTL 01 aAyopaoTeg dev yvmpifovv o évag Tov dANo Kat dev yvopilovv Aerrtopépeteg
OXETIKA H€ TOV DITOKEIPEVO pnyaviopo, kabwg dtagopetikd Oa prropovoav va pdabdoov mmoto ei-
VAl IPAYPATIKA TO AVTIKEPEVO P0G IMANOL. AV avTo Oev elvat duvato, TOTe 1) apyr] 0OVOETTG
tov Milgrom and Weber [1982] vrmodeuviet 0Tt 1) KaAbTepn oTpatnylkl] TOL D®ANT eivat va
ATIOKAaALWet OAeG TIg AN POPOPLEG TTOL £XEL OTODG AYOPAOTES.

Ot Levin and Milgrom [2010] xabwg xat o Milgrom [2010] ¢dei§av o1t 0 KaAOTeEPOG TPOTIOG
yla va ekpetalevtet kaveig mbaveg acvppetpieg oty TANpo@opnon etvat péom KataAAnAng
drapéplong TV avikepevev oe opadeg. Xt PipAoypagia éxoov npotadet diapopa poviéda
yla anoKaAoyrn KataANA®@V IANpo@opiadv otovg ayopaotss. I'ia mapadetypa, ot Ghosh et al.
[2007] Bempnoav mAr)pr) MANPOPOPN O KAl IPOTELVAV EVA OXIHLA OO 0NG OVUPOVA e
T0 oroto, ta avtikeipeva StapepifovTal oe DIIOOLVOAA KA, £HELTA, Yid KAbe eva amd aotd ta
DIIOOLVOAQ, ekTeleital pia Sexmpilotr) dnpompacia OevTePNG TG, ADTO £xel MG ATIOTENEOPA
ot mBavol ayopaotég va pnv PIopody va KAVOLV IPOOPOPES LOVO yid TA AVIIKEIPEVA IOV
npaypatkda 0éNoov va anoxtrioovv, aAd va MPEMEL VA avIay®@VioTodV KAt yid avTikeipeva
ta omoia Oev embopoovy va ayopacoov. AnAadr), n {tnon kdabe avtikeypevoo avfavetat to

orolo ovvendayetat peyalotepo kEpoog yia tov noAntr). Ot Emek et al. [2012] napovoiacav
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anoteAéopata MOALDIAOKOTNTAG O éva Mapopolo mbavotiko povtélo, eve ot Miltersen and
Sheffet [2012] peétnoav KAAOPATKA oxrjpatd OlapEPLONG Y AIIOOTOAL] ONHAT®V.

Telog, alilel va avagepovpe OTL 1 P10 YPARHIKOD IPOYPAPHRATIOROD Yld TV avAaAvor)
APy®G OLVOLAOTIKAV aAyopiBpmV etvatl mAéov pia ITOAD KAAd Oplopéve) TEXVIKE] Kat £xet 101
adlonownOet oe MOAA GlaoPeTIKA IPOPANIATA OXETIKA He TOMOOETOnN eYKATAOTACE®V [Jain
et al., 2003], kaAoyn covolwv [Athanassopoulos et al., 2009a,b, Caragiannis et al., 2013], tat-
pliaopata dpeong anoxkpong [Mahdian and Yan, 2011], péytoteg Sievbovopeveg topég [Feige
and Jozeph, 2015], xat 6popoAoynon prjikoog kopatog [Caragiannis, 2009].
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