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Design and analysis of algorithms
for non-cooperative environments

Alexandros A. Voudouris

Abstract

This thesis studies issues related to problems that arise in large-scale distributed environments

with non-cooperative users, who act strategically and compete with each other to maximize

their personal payoffs.

For instance, imagine a scenario where a set of users compete over a resource, such as

the bandwidth of a communication link or advertisement slots when keywords are queried

in search engines on the Internet. A mechanism takes input from all participating users (which

represents their preferences) and outputs an allocation of the resource to them (it distributes

the bandwidth or assigns slots). Each user aims to select her input to the mechanism in order to

satisfy her personal objectives (possibly by misreporting her true preferences), without caring

about the social welfare which we would like to maximize as the designers of the mechanism.

Therefore, this behavior induces a strategic game among the users who act as players and

sequentially change their strategies until they reach an equilibrium state (if one exists) from

which no one has any incentive to deviate. Due to the strategic behavior of the users, the

equilibrium that is reached may be of low quality in terms of some objective function like the

social welfare, compared to what could happen if a central authority dictated the strategies of

the users. The price of anarchy and stability are two quantification measures of this kind of

inefficiency at equilibrium.

Our main goal in this thesis is to understand the advantages and constraints of the strategic

games that arise in non-cooperative environments as means of computation. What can they

compute and how well can they compute it? Is it possible to alter the rules of the game and

incentivize the players to truthfully report their preferences? We answer to such questions

related to equilibrium computation, price of anarchy and stability estimation, and truthful

mechanism design for many interesting and important classes of problems. In particular, we

study resource allocation with budget constraints, opinion formation, ownership transfer with

expert advice, and revenue maximization in randomized combinatorial sales.
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Σχεδιασμός και ανάλυση αλγορίθμων
για μη συνεργατικά περιβάλλοντα

Αλέξανδρος Ανδρέας Βουδούρης

Περίληψη

H παρούσα Διατριβή μελετά προβλήματα που προκύπτουν σε περιβάλλοντα μεγάλης κλίμα-

κας με εγωκεντρικούς χρήστες, οι οποίοι συμπεριφέρονται στρατηγικά και ανταγωνίζονται

μεταξύ τους με σκοπό να μεγιστοποιήσουν το ατομικό τους κέρδος.

Για παράδειγμα, φανταστείτε ένα σύνολο από χρήστες που ανταγωνίζονται για έναν πόρο,

όπως το εύρος ζώνης ενός τηλεπικοινωνιακού καναλιού ή θέσεις διαφήμισης σε αποτελέσματα

αναζήτησης στο Διαδίκτυο. Ένας μηχανισμός δέχεται είσοδο από όλους τους χρήστες και πα-

ράγει ως έξοδο μια κατανομή του πόρου σε αυτούς. Κάθε χρήστης προσπαθεί να επιλέξει την

είσοδο του έτσι ώστε να εξυπηρετήσει τα προσωπικά του συμφέροντα (ενδεχομένως αποκρύ-

πτοντας τις αληθινές του προτιμήσεις), χωρίς να νοιάζεται για το κοινωνικό όφελος το οποίο

εμείς επιθυμούμε να μεγιστοποιήσουμε ως σχεδιαστές τους μηχανισμού. Η συμπεριφορά αυτή

ορίζει ένα στρατηγικό παιχνίδι μεταξύ των χρηστών οι οποίοι αλλάζουν στρατηγικές μέχρι

το παιχνίδι να φτάσει σε κατάσταση ισορροπίας από την οποία κανείς δεν έχει κίνητρο να

αποκλίνει. Η ισορροπία ενδέχεται να έχει μικρή απόδοση (σύμφωνα με κάποια αντικειμενική

συνάρτηση όπως το κοινωνικό όφελος) σε σχέση με το τι θα μπορούσε να συμβεί αν κάποια

κεντρική αρχή διέταζε τους χρήστες για το πως να συμπεριφερθούν. Το κόστος της αναρχίας

και της ευστάθειας είναι δύο μετρικές που χρησιμοποιούνται για την ποσοτικοποίηση αυτής

της μη-αποδοτικότητας.

Κύριος στόχος μας είναι η κατανόηση των δυνατοτήτων καθώς και των περιορισμών των

στρατηγικών παιχνιδιών ως μέσα υπολογισμού. Τι μπορούν να υπολογίσουν και πόσα καλά

μπορούν να το υπολογίσουν; Είναι δυνατόν να μεταβάλλουμε τους κανόνες του παιχνιδιού

έτσι ώστε οι παίκτες να έχουν κίνητρο να λένε πάντα την αλήθεια; Απαντάμε σε τέτοιου εί-

δους ερωτήσεις μελετώντας ζητήματα υπολογισμού ισορροπιών, εκτίμησης κόστους αναρχίας

και ευστάθειας, καθώς και σχεδίασης φιλαληθών μηχανισμών για ενδιαφέρουσες και σημαντι-

κές κλάσεις προβλημάτων. Πιο συγκεκριμένα, ασχολούμαστε με προβλήματα ανάθεσης πόρων

υπό περιορισμούς προϋπολογισμού, διαμόρφωσης απόψεων σε κοινωνικά δίκτυα, μεταφοράς

ιδιοκτησίας, και μεγιστοποίησης εσόδων σε συνδυαστικές αγορές.
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Chapter 1

Introduction

Over the last two decades, the rapid and continuously increasing development of large-scale

distributed systems and social networks, has led to the implementation of non-cooperative

environments, where multiple self-interested agents may compete with each other in many

different contexts. For instance, such agents could be the users of a communication link that

compete over the limited available bandwidth, advertisers that compete over advertising space

when keywords are queried in search engines, potential buyers that compete over acquiring

government assets, or even simple people that debate with their social acquaintances over an

issue by expressing opinions.

In such scenarios, each agent aims to select the best possible strategy in order to optimize

various personal objectives (for example, she might want to maximize some utility function

or minimize some cost function, depending on context), which are not only affected by the

underlying structure of the environment, but also by the other agents and the strategies that

they choose. Consequently, the agents engage as players into a non-cooperative strategic game

[Nash, 1951, Nisan et al., 2007], which is defined by the ground rules of the environment (the

underlying mechanism that is used), as well as by the different possible strategies and the

personal objectives of the participating players. 1 When all players have chosen strategies such

that they simultaneouslymaximize their utility (in the sense that none of themhas any incentive

to deviate to a different strategy in order to even slightly increase her personal utility), then we

say that the corresponding strategic game has reached a stable state, an equilibrium. There are

many important computational andmathematical questions regarding stability, computational

complexity and efficiency in strategic games.

1It is worth remarking that non-cooperative games significantly differ from cooperative games [Chalkiadakis
et al., 2011], where the players are allowed to cooperate with each other and form coalitions in order to collectively
achieve to optimize their personal objectives.
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Existence of equilibria and complexity

The first apparent question is the following one: Do equilibria always exist? In his famous 1951

paper, John F. Nash proved that any finite strategic non-cooperative game has at least one

equilibrium if the players are allowed to choose probability distributions over their strategies;

these distributions are called mixed strategies. However, this is not always the case when the

players choose their strategies deterministically; these are called pure strategies. If equilibria do

exist, then what is the complexity of computing them? There has been much research devoted

to this question, especially for the case of mixed equilibria for which the existential aspect has

already been answered positively. In general, Daskalakis et al. [2009] and Chen et al. [2009]

proved that the problem of computing a mixed equilibrium in reasonable time is hard (PPAD-

complete) even for two players only.

Efficiency at equilibrium

Of course, one of the most important issues in computing systems are related to efficiency.

To measure efficiency in a strategic game, we can define a social objective function over all

possible states of the game; the value of this social function for a particular state of the game

can be thought of as representing the total happiness (or unhappiness, depending on context)

of the players for this state. As system designers, we would like the game to end up in a state

that globally maximizes the social function in order to maximize the total happiness of the

participating players. However, this goal is not always totally aligned to the selfishness of the

players, which may only lead to local maxima of the social function instead.

To quantify the worst-case degradation of quality in equilibria, in their celebrated 1999

paper, Koutsoupias and Papadimitriou introduced the notion of the price of anarchy, which

is defined as the ratio between the maximum value of the social function (attained at any

state of the game) and the minimum value of the social function attained at any equilibrium;

essentially, the price of anarchy is an analogue to the approximation ratio in combinatorial

optimization [Vazirani, 2001, Williamson and Shmoys, 2011]. The similar notion of the price of

stability was later introduced by Anshelevich et al. [2008] in order to quantify the best-case

efficiency loss at equilibria (using the maximum function value equilibrium instead of the

minimum one in the definition of the ratio).

Apart from the aforementioned papers that introduced the price of anarchy and the price

of stability, these notions have been used extensively in order to bound the inefficiency of

2



equilibria in many important classes of strategic games that naturally arise in distributed

systems. Indicatively, they have been applied in the context of congestion games (for instance,

see the papers by Roughgarden and Tardos [2002] and Christodoulou and Koutsoupias [2005],

which are among the very first ones on this topic) and auctions (for example, see the seminal

work of Christodoulou et al. [2016a], which initiated the analysis of price of anarchy in Bayesian

auction settings, as well as the recent survey by Roughgarden et al. [2017], which goes through

almost all recent developments on issues related to efficiency in auctions).

Mechanism design

Another rich line of research that focuses on mechanism design deals with the question of

whether we can guide the strategic behavior of the players by altering the rules of the game so

that they have themotive to act truthfully and the game is able to reachmore efficient equilibria.

A prime example of such amechanism is the single-item second price auction of Vickrey [1961]

which allocates the item to the highest bidder and requires a payment from her that is equal

to the second highest bid. This auction format achieves to allocate the item to the player that

values it the most and is truthful in the sense that all participants have incentive to simply bid

the value they have for the item.

For multiple items, the ideas of the second price auction are adapted by the well-known

Vickrey-Clarke-Groves (VCG) mechanism, which allocates the items in order to maximize the

total value of the players, while it requires from each of them a payment that is equal to the

value of the allocation that would be computed if they did not participate in the auction. Even

though the VCGmechanism looks like the ideal solution, it cannot always be applied. In many

scenarios, it may require to search over an exponentially large space in order to identify the

optimal allocation, while the players need to report their whole valuation functions, which

may lead to exponential communication complexity.

Given these limitations of the VCGmechanism in many interesting scenarios as well as the

fact that it requires the use of monetary transfers in order to operate, 2 a plethora of researchers

have instead focused on the design of simple truthful mechanisms that are approximately

optimal andmay usemoney [Nisan and Ronen, 2001] or not [Procaccia and Tennenholtz, 2013].

Subsequently, approximate mechanism design has been applied inmany different settings like

in combinatorial auctions [Dobzinski et al., 2012, Mualem and Nisan, 2008], keyword search

2Actually, the use of money is essential in order to avoid well-known impossibilities from social choice theory,
which state that optimal and truthful mechanisms are necessarily dictatorial [Gibbard, 1973, Satterthwaite, 1975].

3



auctions [Aggarwal et al., 2006], fair division [Cole et al., 2013], social welfare maximization

problems [Briest et al., 2011, Filos-Ratsikas et al., 2014, Filos-Ratsikas and Miltersen, 2014],

scheduling problems [Archer and Tardos, 2001], and even kidney exchange [Ashlagi et al.,

2015, Caragiannis et al., 2015].

Problems considered in this thesis

In this thesis, we consider issues related to stability, computational complexity, efficiency, and

mechanism design for four different problems that emerge due to the strategic behavior of

the participating agents. In particular, we first focus on the efficiency of mechanisms for the

allocation of a single divisible resource among users that have budget constraints. Second, we

turn our attention to a particular class of compromising opinion formation games. Third, we

consider a novel mechanism design problem related to ownership transfer. Finally, we also

design approximation algorithms for revenue maximization in combinatorial sales. In the rest

of this chapter, we will give a comprehensive introduction and motivation for each of these

problems, and shortly discuss our contribution and techniques.

1.1 Resource allocation with budget constraints

Resource allocation is an ubiquitous task in computing systems and usually sets non-trivial

algorithmic challenges to their design. As such, resource allocation problems have received

much attention by the algorithmic community for decades. The recent emergence of large-scale

distributed systems with non-cooperative users that compete for access to scarce resources has

led to game-theoretic treatments of resource allocation.

In this thesis, we study a particular simple class of resource allocation mechanisms that aim to

distribute a divisible resource (such as bandwidth of a communication link, CPU time, storage

space, etc.) by auctioning it off to different users as follows. Each user is asked to submit a scalar

signal. Given the submitted signals, the mechanism decides the fraction of the resource that

will be allocated to each user, as well as the payment that will be received from each of them. A

typical example is a mechanism that has been proposed by Kelly [1997] (henceforth called the

Kelly mechanism; see also Kelly et al. [1998]), according to which the fraction of the resource

allocated to each user is proportional to the user’s signal, and the signal itself is her payment.

Following the standard modeling assumptions in the related literature, the value of each

user for a resource fraction is given by a private valuation function. The above definition of

resource allocation mechanisms allows the users to act strategically in the sense that the

4



signal they select to submit is such that their utility (value for the fraction of the resource

they receive minus payment) is maximized. Naturally, this behavior defines a strategic game

among the users, who act as players. Soon after the definition of the Kelly mechanism, a series

of papers studied the existence and uniqueness of pure Nash equilibria (snapshots of player

strategies, in which the signal of each player maximizes her own utility) of the induced games

[Hajek and Gopalakrishnan, 2002, La and Anantharam, 2000, Maheswaran and Basar, 2003]

and quantified their inefficiency [Johari and Tsitsiklis, 2004] using the notion of the price of

anarchy [Koutsoupias and Papadimitriou, 1999].

In particular, Johari and Tsitsiklis [2004] used the social welfare — the total value of the

players for their received fraction of the resource — as an efficiency benchmark and proved

that the social welfare at any equilibrium is at least 3/4 times the optimal social welfare. This

translates into a price of anarchy bound of 4/3, which is tight. The paper of Johari and Tsitsiklis

[2004] sparked subsequent research on other resource allocationmechanisms, that use different

allocation rules or payments.

A first apparent question was whether improved price of anarchy bounds are possible by

changing the proportional allocation function, but keeping the simple pay-your-signal (PYS,

for short) payment rule. Sanghavi and Hajek [2004] showed that no PYS mechanism has price

of anarchy better than 8/7, designed an allocation function that achieves this bound for two

players, and provided strong experimental evidence that a slightly inferior bound holds for

arbitrarily many players. Surprisingly, full efficiency at equilibria (i.e., a price of anarchy equal

to 1) is possible via different allocation/payment functions. This discovery was made in three

independent papers by Maheswaran and Basar [2006], Yang and Hajek [2007], and Johari and

Tsitsiklis [2009]. The mechanism of Maheswaran and Basar [2006] uses proportional allocation

but different payments (see Section 2.3 for its description), while the mechanisms of Johari and

Tsitsiklis [2009] and Yang and Hajek [2007] are adaptations of the well-known VCG paradigm

(see also the survey by Johari [2007] on these results).

Our focus is on the— arguably, more realistic — setting, in which each player has a private

budget that restricts the payments that she can afford and, consequently, narrows her strategy

space. As resource allocation mechanisms do not have direct access to budgets, the set of

equilibria can drastically change and their social welfare can be extremely low compared to the

optimal social welfare, which in turn is not related to player strategies, payments, or budgets.

An efficiency benchmark that is suitable for budget-constrained players is known as liquid
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welfare (introduced by Dobzinski and Paes Leme [2014] and, independently, by Syrgkanis and

Tardos [2013] who call it effectivewelfare) and is obtained by slightly changing the definition of

the social welfare, taking budgets into account. Informally, the liquid welfare is the total value

of the players for the resource fraction they receive, with the value of each player capped by her

budget. Following the recent paper of Azar et al. [2017], we use the term liquid price of anarchy

(and abbreviate it as LPoA) to refer to the price of anarchy with respect to the liquid welfare,

i.e., the ratio between the optimal liquid welfare of a game induced by a resource allocation

mechanism and the worst liquid welfare over all equilibria of the game.

Our contribution

In chapter 2, we show a tight bound of 2 on the liquid price of anarchy of the Kelly mechanism

and an unconditional lower bound of 2− 1/n for any n-player mechanism, essentially proving

that Kelly is best possible among all multi-user resource allocation mechanisms. In our proofs,

we exploit the particular structure of worst-case games and equilibria, which also allows us

to design (nearly) optimal two-player mechanisms by solving simple differential equations.

These results have been published in [Caragiannis and Voudouris, 2018].

1.2 Opinion formation and compromise

Opinion formation has been the subject of much research in sociology, economics, physics, and

epidemiology for decades. The widespread adoption of the Internet has allowed the recent

blossoming of social networks, which have facilitated information dissemination in ways that

have been beneficial for their users, but they are often used strategically in order to spread

information that only serves the objectives of particular parties. These properties have recently

attracted the interest of researchers in artificial intelligence [Auletta et al., 2016, Schwind et al.,

2015, Tsang and Larson, 2014] as well as in computer science at large [Bindel et al., 2015, Mossel

and Tamuz, 2014, Olshevsky and Tsitsiklis, 2009], and has led to revisions of classical opinion

formation models from sociology using game-theoretic notions and tools.

An influential model that captures the adoption of opinions in a social context has been

proposed by Friedkin and Johnsen [1990]. According to this, each individual has an internal

belief on an issue and publicly expresses a (possibly different) opinion; internal beliefs and

public opinions are modeled as real numbers. In particular, the opinion that an individual

expresses follows by averaging between her internal belief and the opinions expressed by her

social acquaintances. Recently, Bindel et al. [2015] showed that this behavior can be interpreted
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through a game-theoretic lens: averaging between the internal belief of an individual and

the opinions in her social circle is simply a strategy that minimizes an implicit cost for the

individual. This cost is defined using a quadratic function which is equal to the total squared

distance of the opinion that the individual expresses fromher belief and the opinions expressed

in her social circle. In a sense, the strategic behavior of the individual leads to opinions that

follow the majority of her social acquaintances.

Bindel et al. [2015] considered a static snapshot of the social network and assumed that the

opinion of each individual is affected by all of her social acquaintances. However, in reality, as

opinions evolve, people usually tend to disregard opinions that are far away from their own

personal beliefs, even if these are expressed by their best friends. Following such a reasoning,

Bhawalkar et al. [2013] implicitly assumed that the opinion of an individual depends only on a

small number of people in her social circle, her neighbors. So, in their model, opinion formation

co-evolveswith the neighborhood for each individual, which consists of those people who have

opinions that are similar to her belief. Then, the opinion expressed is assumed to minimize the

same quadratic cost function that was previously used by Bindel et al. [2015], taking now into

account the neighborhood instead of the whole social circle.

Both Bindel et al. [2015] and Bhawalkar et al. [2013] were able to prove small constant (9/8

and approximately 14, respectively) bounds on the price of anarchy of the strategic games that

may be induced by the assumptions of their models. These bounds essentially indicate that an

abnormally high fraction of the population of people expresses opinions that are close to their

personal beliefs. Unfortunately, this is hard to rationalize given the so many different and, in

some cases, extreme opinions that are expressed, for example, in discussions regarding politics

or religion.

We follow the co-evolutionary model introduced by Bhawalkar et al. [2013], and assume

that the neighborhood of each individual consists of the k other individuals whose opinions

are the closest ones to her belief. However, we deviate from the quadratic cost definition and,

instead, consider individuals that seek to compromise more with their neighbors, by assuming

that each individual aims to minimize themaximum distance of the opinion she expresses from

her internal belief and each of the opinions expressed in her neighborhood. Naturally, these

modeling decisions lead to the definition of strategic games, which we call k-compromising

opinion formation (k-COF) games, where each individual is a cost-minimizing player with the

opinion expressed as her strategy.
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Our contribution

In chapter 3 of this thesis, we quantify the inefficiency of equilibria arising in k-COF games

and show that compromise comes at a cost that strongly depends on the neighborhood size.

Specifically, we prove (both upper and lower) bounds on the price of anarchy and stability

[Anshelevich et al., 2008], which depend linearly on the neighborhood size. For the special case

of k = 1we also design a simple algorithm that is based on path computations on particularly

defined directed acyclic graphs, which can verify whether there exists a pure equilibrium or

not, and in case it does, it can compute both the best and the worst equilibrium (in terms of

social cost). These results have been published in [Caragiannis et al., 2017a].

1.3 Ownership transfer

Most well-studied problems in computational social choice [Brandt et al., 2016] deal with the

task of merging individual preferences over alternatives – often expressed as rankings – into

a collective choice [Caragiannis et al., 2017,b, Procaccia et al., 2012, Skowron et al., 2016]. More

often than not, the mechanisms employed for this aggregation task are ordinal and do not

utilize the intensities of the preferences of the individuals. Further, due to several well-known

impossibility theorems [Gibbard, 1973, 1977, Satterthwaite, 1975], these mechanisms are also

non-truthful, meaning that some of the participating individuals may have strong incentives

to misreport their preferences to manipulate the mechanism to output an alternative that they

prefer more.

In contrast, the class of truthful cardinal mechanisms has been shown to be much richer

[Barbera et al., 1998, Feige and Tennenholtz, 2010, Freixas, 1984] and exploiting the additional

information provided by the numerical values (expressing individual preferences) can notably

increase the overall well-being of the society [Cheng, 2016, Filos-Ratsikas and Miltersen, 2014,

Guo and Conitzer, 2010]. At the same time, truthful mechanisms with money are pretty well-

understood by now and the welfare-maximizing mechanisms for a wide class of problems

are known [Nisan et al., 2007]. A celebrated such example is the family of VCG mechanisms

[Clarke, 1971, Groves, 1973, Vickrey, 1961].

However, in a rich set of hybrid social choice problems, monetary transfers are possible only

for a fraction of the participating individuals. This naturally renders solutions like the VCG

mechanism insufficient. Therefore, designing truthful, cardinal mechanisms is a much more

challenging task and one needs to combine elements of mechanism design with money and social
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choice.

We provide a few examples of such hybrid social choice scenarios. Government agencies

routinely sell public assets such as spectrum, land, or government securities, by transferring

their ownership (or usage rights). As such transfers may have huge impact to citizens, the

decision about the new ownership is not simply the outcome of some competitive process

among the potential buyers (for instance, through an auction), but it usually also involves

experts from the citizen community who provide advice regarding the societal impact of each

potential ownership transfer [Janssen, 2004]. In contrast to each potential buyer who faces a

value-for-money trade-off, the experts care only about societal value; their compensation is

unrelated to the ownership decision and instead depends on their reputation and experience

only. The government needs both parties for a successful transfer of the public assets and a

reasonable goal would be to maximize the social welfare, which aggregates the values of buyers

and experts for the ownership transfer.

A very similar situation occurs for private ownership transfers. Mergers and acquisitions

play a central role in the competition among private players in a market, and the rules or the

policies that dictate themergers are often up for debate.3 There is ample evidence to support the

fact that the transfer of ownership of an organization has a significant impact on the economy

of the employees and the customers [Auerbach, 2008, Hitt et al., 2001]. The current owner or

the administration can employ industry experts for their opinion on the transfer and ask the

potential buyers to quote their values. Similarly to the previous example, the administration

takes into account the input of both parties and social welfare maximization among them is a

reasonable goal. Furthermore, in the organization of sporting events, the bids of the potential

hosts are taken into consideration along with the recommendations of a respective sports

administrative body (for example, IOC for the Olympic Games, FIFA for the World Cup, and

FIA for Formula One).

Motivated by examples like the ones described above, we consider a setting where the

bidders offer monetary compensations (to buy into a new company or a government asset),

but the experts (the citizen representatives or the administrative body) do not. The objective

is to achieve the decision that maximizes the social welfare, which includes the cardinal values

of both the expert and the bidders. This is a hybrid social choice setting that blends together

classical social choice and classical mechanism design with money, but is distinct from both of

3EU data show that more than 6500 mergers have taken place in the EU since 1990, and strict rules are in effect
for mergers [European Commission, 2018].
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them, thereby rendering celebrated solutions like the VCG mechanism insufficient.

Our contribution

In chapter 4, we study the fundamental version of the aforementioned ownership transfer

problem with one expert and two potential buyers, and provide tight approximation guarantees

of the optimal social welfare for many classes of truthful mechanisms. We distinguish between

mechanisms that use ordinal and cardinal information, as well as between mechanisms that

base their decisions on one of the two sides (either the buyers or the expert) or both.Our analysis

shows that the cardinal setting is quite rich and admits several non-trivial randomized truthful

mechanisms, and also allows for closer-to-optimal-welfare guarantees. These results can be

found in [Caragiannis et al., 2018].

1.4 Asymmetry of information in revenue maximization

Exploiting information asymmetries tomaximize revenue dates all the way back to the seminal

work of Akerlof [1970] who considered such issues in the so-called market for lemons. Suppose

a market for cars including high-quality ones (which are known as peaches in American slang)

as well as low-quality ones that can be found to be defective only after they have been bought;

these are known as lemons (due to the sourness they cause to their buyers). In such a market,

the seller has muchmore accurate information about the quality of the cars, while the potential

buyers do not and cannot distinguish between peaches and lemons. This boils down to an

interesting strategic decision making problem from the seller’s side to find the best possible

way to exploit the situation and sell the items at a higher price than the one that could be set

if the buyers knew the whole truth. As expected, the work of Akerlof [1970] on information

asymmetry sparked subsequent research in economics [Crawford and Sobel, 1982, Levin and

Milgrom, 2010, Milgrom, 2010, Milgrom and Weber, 1982] and, recently, in computer science

as well [Dughmi, 2014, Emek et al., 2012, Ghosh et al., 2007, Guo and Deligkas, 2013, Miltersen

and Sheffet, 2012].

Following the work of Alon et al. [2013], we focus on randomized take-it-or-leave-it sales.

There are m items and n potential buyers. Each buyer has a value for each item, and she is

generally unaware of the existence of the other buyers and their values. In contrast, the seller

is assumed to know the values of the buyers for the items. According to some probability

distribution, nature selects a single item for sale at random, and this random choice is revealed

to the seller, but not to the buyers. Then, the seller approaches the highest value buyer and
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offers the item to her at a price that is equal to her value for it. A specific instantiation of this

setting could be the following: the items correspond to keywords and the potential buyers

correspond to advertisers. Every advertiser has a value for each keyword which represents

the maximum amount of money she is willing to pay in order to occupy the advertising space

that is allocated when the particular keyword is queried. The role of nature is played by users

who submit queries, and the role of the seller is played by the search engine, which allocates

the advertising space according to the keyword queried each time, and in such a way that its

revenue is maximized.

Can the seller exploit the fact that she has much more accurate information about the items

for sale compared to the potential buyers? In particular, information asymmetry arises since

the seller knows the realization of the randomly selected item whereas the buyers do not. A

possible approach is to let the seller define a buyer-specific signalling scheme. That is, for each

buyer, the seller can partition the set of items into disjoint subsets (bundles) and report this

partition to the buyer. For example, the search engine could bundle together keywords that

are closely related to each other. After nature’s random choice, the seller can reveal to each

buyer the bundle that contains the realization, thus enabling her to re-evaluate her beliefs for

the particular bundle (i.e., compute her expected value for the whole bundle and each item

therein).

Alon et al. [2013] introduced the asymmetric matrix partition problem as an abstraction of

revenue maximization in take-it-or-leave-it sales. Instances of the problem consist of an n×m

matrix A containing non-negative real values and a probability distribution over its columns.

A partition scheme B = (B1, ..., Bn) consists of a partition Bi for each row i of A. The partition

Bi acts as a smoothing operator on row i that distributes the expected value of each partition

subset proportionally to all its entries. Given a scheme B that induces a smooth matrix AB , the

partition value is the expected maximum column entry of AB . The objective is to compute a

partition scheme such that the resulting partition value is maximized. The relation to take-it-

or-leave-it sales should be apparent: the columns of the input matrix correspond to items, the

rows correspond to potential buyers, and the value of the entry (i, j) corresponds to the value

that buyer i has for item j. After the bundling of the items for a specific buyer, the smooth

value of a bundle corresponds to the expected value the buyer has for each item included in the

bundle. Finally, the partition value corresponds to the expected revenue of the seller. Among

other results, Alon et al. [2013] proved that the problem is APX-hard even for the simplest case
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of binary matrices, and designed 0.563– and 1/13–approximation algorithms for the cases of

uniform and non-uniform probability distributions, respectively.

Our contribution

In chapter 5, we significantly improve both results of Alon et al. [2013]. We present a 9/10–

approximation algorithm for the case where the probability distribution is uniform and a

(1−1/e)–approximation algorithm for non-uniformdistributions. Although our first algorithm

is combinatorial (and very simple), the analysis is based on linear programming and duality

arguments. In our second resultwe exploit a nice relation of the problem to submodularwelfare

maximization. These results have been published in [Abed et al., 2018].
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Chapter 2

The efficiency of resource allocation
mechanisms for budget-constrained
users

In this chapter we present our results on the efficiency of resource allocation mechanisms for

users with budget constraints, as they were published in [Caragiannis and Voudouris, 2018];

see the discussion in Section 1.1 for a comprehensive introduction to the problem.

2.1 Overview of contribution and techniques

We aim to explore all resource allocation mechanisms to find the one with the best possible

LPoA. Our results suggest a drastically different picture compared to the no-budget setting.

First, the analogue of full efficiency is not achievable; we show a lower bound of 2−1/n on the

LPoA of any n-player resource allocation mechanism (under standard technical assumptions

for player valuations and mechanism characteristics). We prove that the Kelly mechanism has

an almost best possible LPoA of exactly 2, while the Sanghavi and Hajek (SH) mechanism has

an LPoA of 3. Improved bounds are possible for two players. We design the two-player pay-

your-signal (PYS) resource allocationmechanism E2-PYS that has an LPoA of 1.792; this bound

is optimal among a very broad class of mechanisms.We also design the two-player mechanism

E2-SR that achieves an almost optimal LPoA bound of at most 1.529; this mechanism uses

different payments. See Table 2.1 for a summary.

Our results exploit a particular structure of worst-case (in terms of LPoA) games and their

equilibria. We prove that for every resource allocation mechanism, the worst-case LPoA is

obtained at instances in which players have affine valuation functions. In addition, all players

besides one have finite budgets and play strategies that imply payments that are either zero or
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Mechanism LPoA Comment
all ≥ 2− 1/n No mechanism can achieve full efficiency (Theorem 2.1)
Kelly 2 Tight bound; almost optimal among all n-player mechanisms

(Theorem 2.5)
SH 3 Tight bound (Theorems 2.6 and 2.7)
E2-PYS 1.792 Tight bound (Theorem 2.8); optimal among all 2-player PYS

mechanisms with concave allocation functions (Theorem 2.9)
E2-SR 1.529 Almost optimal among all 2-player mechanisms (Theorem 2.10)

Table 2.1: Summary of our liquid price of anarchy bounds for resource allocation mechanisms

for budget-constrained users; see [Caragiannis and Voudouris, 2018].

equal to their budget, while a single player has infinite budget and a signal that nullifies the

derivative of her utility. Compared to an analogous characterization for the no-budget case

(with linear valuation functions and player signals that all nullify their utility derivatives),

first observed by Johari and Tsitsiklis [2004] for the Kelly mechanism and later extended to all

resource allocation mechanisms, the structure in our characterization is much richer and the

proof is considerably more complicated. The characterization contains so much information

that the LPoA bounds follow rather easily; the extreme example is the proof of our best LPoA

bound of 2 for the Kelly mechanism which is only a few lines long. It can also be used in the

design of newmechanisms; for example, the design and analysis of our two-playermechanisms

E2-PYS and E2-SR follow by simple first-order differential equations, which would never have

been identified without our characterization. And, furthermore, under assumptions about the

resource allocation mechanisms (e.g., concave allocations and convex payments), the LPoA

bound is automatically proved to be tightwithout the need to provide any explicit lower bound

instance.

2.1.1 Chapter roadmap

The rest of the chapter is structured as follows. We begin with a discussion of other related

work in Section 2.2. Then, we continue with preliminary definitions, notation and examples

in Section 2.3. Our unconditional lower bound on the liquid price of anarchy of any resource

allocation mechanism appears in Section 2.4. Section 2.5 is devoted to proving the structural

characterization of worst-case resource allocation games and equilibria. Then, in Section 2.6

we present tight bounds on the liquid price of anarchy for the Kelly and SH mechanisms. In

Section 2.7, we present our two-player mechanisms E2-PYS and E2-SR. Finally, we present

some interesting extensions of our work in Section 2.8 and conclude in Section 2.9.
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2.2 Related work

As an efficiency benchmark, the liquid welfare has been studied recently in many different

contexts such as in the design of truthful mechanisms (see [Dobzinski and Paes Leme, 2014, Lu

and Xiao, 2015, 2017]) and in the analysis of combinatorial Walrasian equilibria with budgets

[Dughmi et al., 2016]. In the context of the price of anarchy, it was considered in simultaneous

first price auctions by Azar et al. [2017] and in position auctions by Voudouris [2018].

Caragiannis and Voudouris [2016] were the first to prove that the LPoA of Kelly is constant.

In particular, they showed upper and lower bounds of 2.78 and 2, respectively. The lower

bound is essentially proved again here (see Theorem 2.5) with a completely different andmore

interesting technique. Christodoulou et al. [2016b] improved the LPoA upper bound to 2.618

and extended the results to more general settings involving multiple resources. Prior to these

two papers, Syrgkanis and Tardos [2013] proved that the social welfare at equilibria of the Kelly

mechanism is at most a constant factor away from the optimal liquid welfare.

In contrast to the analysis techniques of this chapter, the analysis of the Kelly mechanism

by Caragiannis and Voudouris [2016], Christodoulou et al. [2016b] and Syrgkanis and Tardos

[2013] is closer in spirit to the smoothness template [Roughgarden, 2015, Roughgarden et al.,

2017] and is based on bounding the utility of each player by the utility she would have when

deviating to appropriate signals. Their results extend to more general equilibrium concepts

such as coarse-correlated or Bayes-Nash equilibria. Our LPoA bounds here hold specifically

for pure Nash equilibria, but are superior and tight.

2.3 Definitions and notation

We consider a single divisible resource of unit size that is distributed among n users by a

resource allocation mechanismM . The mechanismM consists of

• an allocation function gM : Rn
≥0 → Q∪ 0, where Q = {d ∈ [0, 1]n :

∑n
i=1 di = 1} is the unit

n-simplex and 0 = (0, ..., 0), and

• a payment function pM : Rn
≥0 → Rn

≥0,

and works as follows. Each user i submits a signal si ∈ R≥0, and the mechanism M allocates

a fraction of gMi (s) of the resource to each user i and asks her for a payment of pMi (s), where

s = (s1, ..., sn) denotes the vector formed by all signals.
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Some important properties of allocation and payment functions are as follows:

• They are anonymous: any permutation of the entries of the input signal vector results in

the same permutation of the output. So, all users get equal resource shares and are asked

for equal payments when they submit identical signals;

• The mechanism does not allocate any fraction and does not ask for any payment from a

user that submits a zero signal;

• By convention, when some user is the only one with a non-zero signal, she gets the whole

resource and is asked for a payment of zero.

Let (y, s−i) denote the signal vector in which user i has signal y and the remaining users have

their signals as in s. Viewed as univariate functions (of variable y), the functions gMi (y, s−i) and

pMi (y, s−i) are increasing and differentiable in R≥0 (with the exception of (y, s−i) = 0).

Each user i has

• a monotone non-decreasing, concave, and differentiable 1 valuation function vi : [0, 1] →

R≥0; vi(x) represents the value that user i has for a resource fraction of x;

• a budget ci ∈ R≥0∪{+∞}, which restricts (upper-bounds) her payment to themechanism.

Her utility from the mechanism is defined as the value she gets for the fraction she is given

minus her payment, i.e.,

uMi (s) = vi
(
gMi (s)

)
− pMi (s).

To capture the fact that budgets impose hard constraints to the users, we technically assume

that uMi (s) = −∞when pMi (s) > ci.

The users act strategically as utility maximizers and, therefore, engage as players into a

strategic resource allocation game GM that is induced by mechanismM . A (pure Nash) equilibrium

is a signal vector s such that, when viewed as a univariate function of variable y, uMi (y, s−i)

is maximized for y = si, i.e., no player can increase her utility by unilaterally deviating to

submitting a different signal. We denote by eq(GM ) the set of all equilibria of game GM . By the

definition and properties of the allocation and payment functions, the signal vector 0 cannot

be an equilibrium as (by the conventions mentioned above) any player has the incentive to
1We remark that our results hold for semi-differentiable valuation functions as well. However, the proof of our

characterization (Lemma 2.2) is technically more involved. So, the differentiability assumption keeps the exposition
simple.

16



unilaterally deviate and get the whole resource without paying anything. We use Xn as an

abbreviation of the set Rn
≥0 \ {0}.

Due to the budget constraints, we have three different cases for the strategy of player i at

an equilibrium s ∈ eq(GM ) (assuming a non-trivial budget ci > 0) and for the corresponding

value of the derivative of her utility. In particular, the derivative ∂uM
i (y,s−i)
∂y

∣∣∣
y=si

is equal to zero

in case si is such that 0 < pMi (s) < ci, non-positive in case si = 0, and non-negative in case si is

such that pMi (s) = ci. Note that nullification of the utility derivative does not necessarily imply

maximization of utility.

We are interested in studying the effect of the strategic behavior to the efficiency of resource

allocation mechanisms. An efficiency benchmark that has been used extensively in the related

literature is the social welfare. For an allocation d ∈ Q∪ 0 of a resource allocation game GM , the

social welfare is defined as

SW(d,GM ) =

n∑
i=1

vi(di),

where n is the number of players in GM and vi is the valuation function of player i. Then, the

inefficiency of equilibria of game GM can be measured by its price of anarchy which is defined

as

PoA(GM ) = sup
s∈eq(GM )

SW∗(GM )

SW(gM (s),GM )
,

where SW∗(GM ) denotes the maximum social welfare over all allocations of GM .

However, the definition of the social welfare does not take into account the possibly finite

budgets that the players may have. Therefore, we instead use the liquid welfare as our efficiency

benchmark. The liquid welfare of an allocation d is defined as

LW(d,GM ) =
n∑

i=1

min{vi(di), ci},

where ci is the budget of player i. Clearly, when players have no budget constraints, the liquid

welfare coincides with the social welfare. The liquid price of anarchy of a resource allocation

game GM is then defined as

LPoA(GM ) = sup
s∈eq(GM )

LW∗(GM )

LW(gM (s),GM )
,

where LW∗(GM ) denotes the maximum liquid welfare over all allocations of game GM . We use

the overloaded term LPoA(M) to denote the liquid price of anarchy of the resource allocation

mechanismM . This is defined as themaximum (or, more formally, the supremum) liquid price

of anarchy over all games that are induced by mechanismM .
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2.3.1 Examples of resource allocation mechanisms

Let us devote some space to the definition of somewell-knownmechanisms from the literature.

An important class of resource allocation mechanisms is that of pay-your-signal mechanisms

(PYS, for short). When at least two players submit non-zero signals, a PYS mechanism charges

each player i a payment equal to the signal si that she submits. Otherwise, PYS mechanisms

follow the general convention that we have defined at the beginning of Section 2.3, and do not

charge any payment to any player.

The most popular PYS mechanism is the Kelly mechanism that was introduced in Kelly

[1997]. This mechanism allocates the resource proportionally to the players’ signals (this is why

it is also known as the proportional allocation mechanism in the related literature), i.e.,

g
Kelly
i (s) = si∑n

j=1 sj
.

The Kelly mechanism has played a central role in the related literature; for the no-budget

setting, Johari and Tsitsiklis [2004] proved that its price of anarchy is 4/3. In their attempt

to design the PYS mechanism with the lowest possible price of anarchy, Sanghavi and Hajek

[2004] defined the allocation function

gSHi (s) = si
maxℓ{sℓ}

∫ 1

0

∏
j ̸=i

(
1− sj

maxℓ{sℓ}
t

)
dt.

We will refer to the PYS mechanism that uses this allocation function as SH. For two players,

the allocation function has a very simple definition as gSH1 (s) = s1
2s2

when s1 ≤ s2, and

gSH1 (s) = 1 − s2
2s1

otherwise. Sanghavi and Hajek [2004] proved that the two-player version

of the SH mechanism has an optimal (among all PYS mechanisms) price of anarchy of 8/7

and provided experimental evidence that the price of anarchy of the n-player version is only

marginally higher. As we will see later in Section 2.6, the comparison between Kelly and SH

yields a drastically different result when players have budgets and the liquid welfare is used

as the efficiency benchmark.

Other interesting classes of mechanisms use proportional allocation, but different kinds of

payments. Among them, a mechanism defined byMaheswaran and Basar [2006] uses the class

of payment functions

pMi (s) =

∑
j ̸=i

sj

 · ∫ si

0

hM (t+
∑

j ̸=i sj)

(t+
∑

j ̸=i sj)
2

dt,
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where hM : R≥0 → R≥0 is an increasing function (such as hM (z) = z; Maheswaran and Basar

[2006] suggest several other choices for hM ). These mechanisms have the remarkable property

of full efficiency at equilibria in the no-budget setting (i.e., they have price of anarchy equal to

1). Independently from Maheswaran and Basar [2006], Johari and Tsitsiklis [2009] as well as

Yang and Hajek [2007] presented resource allocation mechanisms that achieve full efficiency

in the no-budget setting. All these mechanisms can be thought of as adaptations of the well-

known VCG paradigm.

2.4 A lower bound for all mechanisms

The fact that the mechanisms of Maheswaran and Basar [2006], Johari and Tsitsiklis [2009], and

Yang and Hajek [2007] achieve full efficiency seems quite surprising, since resource allocation

mechanisms do not have direct access to the valuation functions of the players. The definition

of these mechanisms is such that the incentives of the players are fully aligned to the global

goal of maximizing the social welfare. In a sense, these mechanisms manage to achieve access

to the valuation functions indirectly. In contrast, when players have budget constraints, we

show below that a liquid price of anarchy equal to 1 is not possible. This means that resource

allocation mechanisms fail to “mine” any kind of information about the budget values of the

players, while budgets affect the strategic behavior of the players crucially.

Theorem 2.1. Every n-player resource allocationmechanism has liquid price of anarchy at least 2−1/n.

Proof. Let M be any n-player resource allocation mechanism that uses an allocation function

gM and a payment function pM . Let s = (s1, ..., sn) be an equilibrium of the game GM1 induced

by M for players with valuations vi(x) = x and budgets ci = +∞, for every i ∈ [n]. Assume

that the allocation returned by M at this equilibrium is d = (d1, ..., dn). Since all players have

the same valuation function and budget, the liquid (or social) welfare at equilibrium is optimal

and, hence, LPoA(GM1 ) = 1.

Recall that, for every signal vector y = (y1, ..., yn), the utility of player i is defined as

uMi (y) = vi(g
M
i (y)) − pMi (y). Now, let i∗ = argmini di (hence, di∗ ≤ 1/n) and consider the

game GM2 where each player i ̸= i∗ has the modified valuation function ṽi(x) = di + x and

budget c̃i = di, while player i∗ is as in GM1 (see Figure 2.1). Observe that the modified utility of

player i ̸= i∗ as a function of a signal vector y is now ũMi (y) = ṽi(g
M
i (y))−pMi (y) = uMi (y)+di.

Also, since the utility of player i ̸= i∗ is non-negative at the equilibrium s of game GM1 , we have

that pMi (s) ≤ di = c̃i, meaning that player i can also afford this payment in game GM2 . Hence, s
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0 di∗ 1
0

di∗

1

vi∗(x) = x

0 di 1
0

di

1

2di

vi(x) = x

ṽi(x) = di + x

Figure 2.1: A graphical representation of the games used in the proof of Theorem 2.1. The two

figures depict the valuation functions of players i∗ and i ̸= i∗ in games GM1 and GM2 . The blue

points (i.e., point (di∗ , di∗) in the left figure, and points (di, di) and (di, 2di) in the right figure)

represent the equilibrium in both games, and the optimal allocation in game GM1 . The optimal

allocation in GM2 is represented by the red points (i.e., point (1, 1) in the left figure and point

(0, di) in the right one).

is an equilibrium in GM2 as well (and, again,M returns the same allocation d).

Its liquid welfare is
∑

imin{ṽi(di), c̃i} =
∑

i di = 1 while the optimal liquid welfare is at

least 1 +
∑

i ̸=i∗ di, achieved at the allocation according to which the whole resource is given to

player i∗. Hence,we conclude that the liquid price of anarchy ofM is LPoA(M) ≥ LPoA(GM2 ) ≥

1 +
∑

i ̸=i∗ di = 2− di∗ ≥ 2− 1/n, as desired.

2.5 The structure of worst-case games and equilibria

In this section, we prove our structural characterization. Given an n-player resource allocation

mechanismM (with allocation and payment functions gM and pM , respectively), signal vector

s ∈ Xn, and an integer j ∈ [n], define the n-player game GM (s, j) as follows. Every player has

the affine valuation function ṽi(z) = λM
i (s) · z + κMi (s) and budget c̃i, where

λM
i (s) =

(
∂gMi (y, s−i)

∂y

∣∣∣∣
y=si

)−1

· ∂p
M
i (y, s−i)

∂y

∣∣∣∣
y=si

and κMj (s) = 0, c̃j = +∞, and κMi (s) = c̃i = pMi (s) for every player i ̸= j.

In the following, we show that the games defined in this way are in a sense extreme in terms

of the liquid price of anarchy of mechanismM .

Lemma 2.2. Let GM1 be an n-player resource allocation game that is induced by a mechanism M with

LPoA(GM1 ) > 1. Let s ∈ Xn be an equilibrium of GM1 of minimum liquid welfare. Then, there exists
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integer i∗ ∈ [n] such that

LPoA(GM1 ) ≤ LW(x̃,GM (s, i∗))
LW(gM (s),GM (s, i∗))

=

∑
i ̸=i∗ p

M
i (s) + λM

i∗ (s)∑
i ̸=i∗ p

M
i (s) + λM

i∗ (s) · gMi∗ (s)
,

where x̃ = (x̃1, ..., x̃n) denotes the allocation with x̃i∗ = 1 and x̃i = 0 for i ̸= i∗.

Proof. Consider an n-player resource allocation game GM1 that is induced by mechanism M .

Let vi and ci be the valuation function and budget of player i, respectively. Let s ∈ Xn be the

equilibrium of game GM1 of minimum liquid welfare. We denote by x the optimal allocation

in GM1 . Without loss of generality, we assume that, for every player i, xi = 0 if vi(0) > ci

and vi(xi) ≤ ci otherwise, and we relax the allocation definition to
∑n

i=1 xi ≤ 1; this does

not constrain the optimal liquid welfare which is LW(x,GM1 ) =
∑

imin{vi(xi), ci}. We use

di = gMi (s) for the resource fraction allocated to player i in s; let d = (d1, ..., dn).

We partition the players into the following three sets:

• Set A consists of players i with vi(di) < ci and signal si such that the derivative of their

utility is equal to 0.

• SetB consists of players iwith signal si = 0 (hence, di = 0) and negative utility derivative

such that vi(0) < ci.

• Set Γ consists of players iwith signal si such that vi(di) ≥ ci.

First, observe that sets A andB cannot be both empty, since it would then be LW(d,GM1 ) =∑
i∈[n] ci ≥ LW(x,GM1 ), and the liquid price of anarchy of GM1 would be exactly 1, contradicting

the assumption of the lemma. So, in the following, we assume that at least one of A and B is

non-empty.

Now consider the games GM (s, j) for j ∈ [n] and let i∗ = argmaxj∈A∪B{λ
M
j (s)}. We will

show that

LW(d,GM1 ) ≥ LW(d,GM (s, i∗)) (2.1)

and we will furthermore show that the allocation x̃ satisfies

LW(x,GM1 )− LW(x̃,GM (s, i∗)) ≤ LW(d,GM1 )− LW(d,GM (s, i∗)). (2.2)
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In this way (recall that s is the equilibrium of minimum liquid welfare in game GM1 and d is the

resulting allocation), we will have

LPoA(GM1 ) =
LW(x,GM1 )

LW(d,GM1 )

≤ LW(x,GM1 )− (LW(x,GM1 )− LW(x̃,GM (s, i∗)))
LW(d,GM1 )− (LW(d,GM1 )− LW(d,GM (s, i∗)))

=
LW(x̃,GM (s, i∗))
LW(d,GM (s, i∗))

=

∑
i ̸=i∗ p

M
i (s) + λM

i∗ (s)∑
i ̸=i∗ p

M
i (s) + λM

i∗ (s) · gMi∗ (s)
,

as desired. The inequality follows by (2.1) and (2.2). The last equality follows since all players

in GM (s, i∗) besides i∗ have always their value capped by their budget, which is equal to their

payment.

Inequality (2.1) is due to the fact that the contribution of each player to the liquid welfare

at s can only decrease between the two games. Indeed, if player i∗ belongs to B, she has zero

value in game GM (s, i∗). If she belongs to A, then her utility derivative is nullified and, hence,

v′i∗(di∗) = λM
i∗ (s). Due to the concavity of vi, we get vi∗(di∗) ≥ di∗v

′
i∗(di∗) = di∗λ

M
i∗ (s) = ṽi∗(di∗).

Moreover, the contribution of player i ̸= i∗ in LW(d,GM (s, i∗)) is c̃i = pMi (s) which is at most

her contribution min{vi(di), ci} in LW(d,GM1 ) since the payment of player i cannot exceed her

budget in GM1 and her utility at equilibrium s is non-negative. See Figure 2.2 for a graphical

representation of valuation functions and budgets in games GM1 and GM (s, i∗).

Let

δ(i) = min{vi(xi), ci} −min{ṽi(x̃i), c̃i} −min{vi(di), ci}+min{ṽi(di), c̃i}

denote the contribution of player i to the expression

LW(x,GM1 )− LW(x̃,GM (s, i∗))− LW(d,GM1 ) + LW(d,GM (s, i∗)).

Then, in order to prove inequality (2.2) it suffices to prove that
∑

i δ(i) ≤ 0.

• For player i∗, we have that vi∗(di∗) < ci∗ . Using the inequality vi∗(xi∗) ≤ vi∗(di∗) +

v′i∗(di∗)(xi∗ − di∗) due to the concavity of the valuation function vi∗ and the fact x̃i∗ = 1,

we have that

δ(i∗) = min{vi∗(xi∗), ci∗} − λM
i∗ (s)x̃i∗ − vi∗(di∗) + λM

i∗ (s)di∗

≤ vi∗(xi∗)− λM
i∗ (s)− vi∗(di∗) + λM

i∗ (s)di∗

22



0 di 1
0

c̃i = pMi (s)

vi(di)

ci

vi(z)

ṽi∗(z)

ṽi(z)

i∗ ∈ A
i ∈ A

di∗ = 0 1
c̃i = pMi (s) = 0

vi∗(di∗)

ci∗ vi∗(z)

ṽi∗(z)

i∗ ∈ B
i ∈ B

di = 0 1
c̃i = pMi (s) = 0

ci

vi(di)

vi(z)

ṽi(z)

i ∈ Γ
case 1

0 di 1
0

c̃i = pMi (s)

ci

vi(di)

vi(z)

ṽi(z)

i ∈ Γ
case 2

0 di 1
0

c̃i = pMi (s) = ci

vi(di)

vi(z)

ṽi(z)

i ∈ Γ
case 3

Figure 2.2: Relation between the two games GM1 and GM (s, i∗) that are used in the proof of

Lemma 2.2. In the first two plots, player i is different than i∗ and the budget c̃i∗ is infinite by

definition. The dashed line is the tangent of vi at di. The slope λM
i (s) of the affine valuation

function of player i in GM (s, i∗) is greater than (upper right and middle left plots), equal to

(upper left and middle right plots), or smaller than (lower plot) v′i(di) depending on whether

the utility derivative of the player is negative, zero, or positive, respectively (in particular,

these are the three cases identified in the plots for i ∈ Γ). This follows by the definition of

games GM1 and GM (s, i∗) and the fact that, as the utility of player i in game GM1 has derivative

v′i(di)
∂gMi (y,s−i)

∂y

∣∣∣
y=si
− ∂pMi (y,s−i)

∂y

∣∣∣
y=si

at equilibrium, the sign of this derivative coincides with

the sign of v′i(di)− λM
i (s).
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≤ v′i∗(di∗)(xi∗ − di∗)− λM
i∗ (s) + λM

i∗ (s)di∗ .

Now, we observe that (for such observations, we follow the reasoning in the caption of

Figure 2.2) if player i∗ belongs toA, then λM
i∗ (s) = v′i∗(di∗), while if she belongs toB, then

λM
i∗ (s) ≥ v′i∗(di∗) and di∗ = 0. In any case, we have that v′i∗(di∗)(xi∗ − di∗) ≤ λM

i∗ (s)(xi∗ −

di∗), and we obtain

δ(i∗) ≤ λM
i∗ (s)(xi∗ − 1). (2.3)

• For all players i ̸= i∗, observe that their value is always capped by their budget in

GM (s, i∗). For player i ̸= i∗ belonging to A or to B we have that either λM
i (s) = v′i(di)

(if i ∈ A), or λM
i (s) ≥ v′i(di) and di = 0 (if i ∈ B). Hence, using the concavity of vi and the

fact that x̃i = 0, we obtain that

δ(i) ≤ vi(xi)− c̃i − vi(di) + c̃i

≤ vi(di) + λM
i (s)(xi − di)− vi(di)

≤ λM
i∗ (s)xi, (2.4)

where the last inequality follows since λM
i (s) ≤ λM

i∗ (s), due to the definition of player i∗.

Otherwise, if i ∈ Γ, we have

δ(i) = min{vi(xi), ci} − c̃i − ci + c̃i ≤ 0. (2.5)

Hence, summing over all players, and using inequalities (2.3), (2.4) and (2.5) as well as the fact

that
∑

i xi ≤ 1, we obtain
∑

i δ(i) ≤ 0, and the proof is complete.

We are now ready to prove the main result of this section.

Lemma 2.3. Let M be an n-player resource allocation mechanism with allocation and payment

functions gM and pM , respectively. Then, its liquid price of anarchy is

LPoA(M) ≤ sup
s∈Xn

{ ∑
i≥2 p

M
i (s) + λM

1 (s)∑
i≥2 p

M
i (s) + λM

1 (s) gM1 (s)

}
, (2.6)

where

λM
1 (s) =

(
∂gM1 (y, s−1)

∂y

∣∣∣∣
y=s1

)−1

· ∂p
M
1 (y, s−1)

∂y

∣∣∣∣
y=s1

.

If, in addition, s ∈ Xn is always an equilibrium of game GM (s, 1), (2.6) holds with equality.
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Proof. Let weq(GM ) be the set of equilibria of minimum liquid welfare in game GM . Using the

definition of the liquid price of anarchy, Lemma 2.2, and the anonymity of resource allocation

mechanisms, we have

LPoA(M) = sup
GM

LPoA(GM )

= sup
GM

sup
s∈weq(GM )

LW∗(GM )

LW(gM (s),GM )

= sup
s∈Xn

sup
GM :s∈weq(GM )

LW∗(GM )

LW(gM (s),GM )

≤ sup
s∈Xn

max
i∗∈[n]

∑
i ̸=i∗ p

M
i (s) + λM

i∗ (s)∑
i ̸=i∗ p

M
i (s) + λM

i∗ (s) gMi∗ (s)

= sup
s∈Xn

∑
i≥2 p

M
i (s) + λM

1 (s)∑
i≥2 p

M
i (s) + λM

1 (s) gM1 (s)
.

Now, if s ∈ eq(GM (s, 1)) for every s ∈ Xn, by just considering the games GM (s, 1) induced by

mechanismM , we have

LPoA(M) ≥ sup
s∈Xn

LPoA(GM (s, 1))

≥ sup
s∈Xn

∑
i≥2 p

M
i (s) + λM

1 (s)∑
i≥2 p

M
i (s) + λM

1 (s) gM1 (s)

and (2.6) holds with equality. The last inequality follows by comparing the liquid welfare at s

to the liquid welfare of the allocation which gives the whole resource to player 1. Recall that all

players besides player 1 have always their value capped by their budget in game GM (s, 1).

Lemma 2.3 is extremely powerful. It essentially says that no game-theoretic reasoning is

needed anymore for proving upper bounds on the LPoA and, instead, all we have to do is to

solve the corresponding mathematical program. Furthermore, it can be used to prove lower

bounds on the LPoA without providing any explicit construction. In this case, we just need to

show that the condition s ∈ eq(GM (s, 1)) holds; then the tight lower bound follows by solving

the same mathematical program.

Before we continue with the rest of our results, we define the class C of mechanisms M

that use concave allocation functions gM and convex payment functions pM . Observe that both

Kelly and SH (as well as the E2-PYS mechanism presented in Section 2.7) are members of this

class. With our next lemma, we prove that the condition s ∈ eq(GM (s, 1)) is satisfied for any C

mechanismM . This will allows us to prove lower bounds in the upcoming sections.
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Lemma 2.4. For any n-player resource allocation mechanismM ∈ C and s ∈ Xn, s ∈ eq(GM (s, 1)).

Proof. Consider any C mechanismM that uses a concave allocation function gM and a convex

payment function pM . By the definition of gameGM (s, 1), the utility of anyplayer i, as a function

of her signal y, is uMi (y, s−i) = λM
i (s) · gMi (y, s−i) + κMi (s)− pMi (y, s−i) and its derivative is

∂uMi (y, s−i)

∂y
= λM

i (s)∂g
M
i (y, s−i)

∂y
− ∂pMi (y, s−1)

∂y
.

Observe that, by the definition of λM
i (s), the signal si nullifies the utility derivative of player i,

and since

∂2uMi (y, s−i)

∂y2
= λM

i (s)∂
2gMi (y, s−i)

∂y2
− ∂2pMi (y, s−1)

∂y2
≤ 0,

this signal actually maximizes the player’s utility.

2.6 Pay-your-signal mechanisms

In this section, we will exploit Lemma 2.3 to prove tight bounds on the liquid price of anarchy

of the Kelly and SH mechanisms. Our LPoA bounds are 2 for Kelly (Theorem 2.5) and 3 for

SH (Theorems 2.6 and 2.7). Recall that both of these mechanisms belong to class C and, by

Lemma 2.4, the condition s ∈ eq(GM (s, 1)) is satisfied.

Theorem 2.5. The liquid price of anarchy of the Kelly mechanism is 2.

Proof. Consider any signal vector s ∈ Xn, and letC =
∑

i≥2 si. Since Kelly is a PYSmechanism,

we have that
∑

i≥2 p
Kelly
i (s) = C and

∂p
Kelly
1 (y, s−1)

∂y
= 1.

By the definition of the allocation function g
Kelly
1 (y, s−1) =

y
y+C , we have that

∂g
Kelly
1 (y, s−1)

∂y
=

C

(y + C)2
.

Also, since the mechanism belongs to class C, by Lemma 2.4, we have that s ∈ eq(GKelly(s, 1)).

Hence,

λ
Kelly
1 (s) = (s1 + C)2

C

and Lemma 2.3 yields

LPoA(Kelly) = sup
s1,C≥0

C + (s1 + C)2/C

C + (s1 + C)s1/C
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= sup
s1,C≥0

2C2 + 2s1C + s21
C2 + s1C + s21

= sup
s1,C≥0

(
2− s21

C2 + s1C + s21

)
= 2,

as desired.

Notice that our proof of Theorem 2.5 is surprisingly short. The proof exploits Lemma 2.3

with (2.6) holding with equality and, as such, it simultaneously provides a tight (upper and

lower) bound. In contrast, our analysis for the SH mechanism is slightly more involved. This

is mainly due to the more complicated definition of the allocation function (see Section 2.3),

which requires us to distinguish between two cases, depending on whether s1 < maxℓ sℓ or

not. Both cases lead to inequalities that provide only an upper bound on the LPoA of SH in the

proof of Theorem 2.6. In Theorem 2.7, we easily prove a matching lower bound by restricting

our attention to the 2-player version of the mechanism. Actually, the proof can be thought of

as providing a tight (i.e., not only lower, but also upper) bound on the LPoA of the 2-player

version of the SH mechanism.

Theorem 2.6. The liquid price of anarchy of the SH mechanism is at most 3.

Proof. We will use Lemma 2.3 and upper-bound the ratio in the RHS of (2.6) by 3. Define C =∑
i≥2 si. First, let s ∈ Xn with s1 < maxℓ sℓ. Let argmaxℓ sℓ = i∗ ̸= 1. Then, by the definition of

SH and the definition of λSH1 (s) in (2.6), we have

λSH1 (s) = si∗∫ 1
0

∏
i≥2

(
1− si

si∗
t
)
dt

(2.7)

and using the Bernoulli inequality stating that 1 − γt ≥ (1 − t)γ for t ≤ 1 and γ ∈ [0, 1], (2.7)

yields

λSH1 (s) ≤ si∗∫ 1
0

∏
i≥2 (1− t)

si
si∗ dt

=
si∗∫ 1

0 (1− t)
C
si∗ dt

= si∗ + C.

Since SH is PYS,
∑

i≥2 p
SH
i (s) = C. Using this observation together with the last inequality, we

obtain ∑
i≥2 p

SH
i (s) + λSH1 (s)∑

i≥2 p
SH
i (s) + λSH1 (s) gSH1 (s)

≤ 2C + si∗

C
≤ 3. (2.8)

The inequalities follow since λSH1 (s) gSH1 (s) ≥ 0, s1 ≥ 0, and si∗ ≤ C.
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Now, let s ∈ Xn with s1 = maxℓ sℓ. In this case, gSH1 (s) is defined as

gSH1 (s) =
∫ 1

0

∏
i≥2

(
1− si

s1
t

)
dt

and

∂gSH1 (y, s−1)

∂y

∣∣∣∣
y=s1

=

∫ 1

0

∑
i≥2

si
s21

t
∏
j ̸=1,i

(
1− sj

s1
t

)
dt

≥
∑
i≥2

si
s21

∫ 1

0
t
∏
j ̸=1,i

(1− t)
sj
s1 dt

=
∑
i≥2

si
s21

∫ 1

0
t(1− t)

C−si
s1 dt

=
∑
i≥2

si
(C − si + s1)(C − si + 2s1)

≥ C

(C + s1)(C + 2s1)
.

Using the definition of λSH1 (s) in (2.6), this last inequality implies that

λSH1 (s) ≤ (C + s1)(C + 2s1)

C
. (2.9)

Also, by applying the Bernoulli inequality to the RHS of the definition of gSH1 (s), we obtain

gSH1 (s) ≥
∫ 1

0

∏
i≥2

(1− t)
si
s1 dt =

∫ 1

0
(1− t)

C
s1 dt =

s1
C + s1

. (2.10)

Now, we have ∑
i≥2 p

SH
i (s) + λSH1 (s)∑

i≥2 p
SH
i (s) + λSH1 (s) gSH1 (s)

≤ C2 + (C + s1)(C + 2s1)

C2 + (C + s1)(C + 2s1) g
SH
1 (s)

≤ 2C2 + 3s1C + 2s21
C2 + s1C + 2s21

≤ 3. (2.11)

The two first inequalities follow by (2.9) and (2.10), respectively, and the last one is obvious

since s1, C ≥ 0.

Now, the upper bound follows by Lemma 2.3 using (2.8) and (2.11).

Theorem 2.7. The liquid price of anarchy of the SH mechanism is at least 3.

Proof. It suffices to restrict our attention to the 2-player version of the mechanism. Let s ∈ X2

with s1 ≤ s2. In this case gSH1 (s) = s1
2s2

which implies that λSH1 (s) = 2s2. Since the SHmechanism

belongs to class C, by Lemma 2.4, we have that s ∈ eq(GSH(s, 1)). Using Lemma 2.3, we obtain

LPoA(SH) ≥ sup
s∈X2:s1≤s2

3s2
s2 + s1

= 3.

The proof is complete.
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2.7 Two-player mechanisms

As we saw in Theorem 2.5, the Kelly mechanism has an LPoA of exactly 2 even in the case of

two players. In contrast, our lower bound of 3/2 for 2-playermechanisms in Theorem 2.1 seems

to leave room for improvements. Such improvements are indeed possible as we showwith the

mechanisms thatwe present in this section. Interestingly, the E2-PYSmechanism that is defined

in the following is also proved to have optimal LPoA among all 2-player PYSmechanismswith

concave allocation functions.

2.7.1 The E2-PYS mechanism

Let β ≈ 1.792 be the solution of the equation 1
β −

1
β exp

(
− β

β−1

)
= 1

2 and define mechanism

E2-PYS to be the PYS 2-player mechanism that uses the allocation function

gE2-PYSi (s) =


1
β −

1
β exp

(
− β

β−1 ·
si

s3−i

)
si ≤ s3−i

β−1
β + 1

β exp
(
− β

β−1 ·
s3−i

si

)
si > s3−i

for player i ∈ {1, 2} and (non-zero) signal vector s = (s1, s2). Due to the definition of β,

E2-PYS is a well-defined resource allocation mechanism: it is anonymous, with an increasing

and differentiable allocation function, which allocates the whole resource when some player

has non-zero signal. Moreover, E2-PYS belongs to class C: the allocation function can be seen

to be concave (see also Figure 2.3) and the payment function is, of course, convex. The LPoA

bound statement for E2-PYS follows.

Theorem 2.8. The liquid price of anarchy of the E2-PYS mechanism is β ≈ 1.792.

Proof. Wewill prove the theoremusing Lemma 2.3. Let s ∈ X2. Due to Lemma 2.4, we have that

s ∈ eq(GE2-PYS(s, 1)). Since E2-PYS is a PYS mechanism, we have that pE2-PYS1 (s) = s1, which

yields

∂pE2-PYS1 (y, s2)

∂y

∣∣∣∣
y=s1

= 1.

Next, we distinguish between two cases. First, assume that s1 ≤ s2; in this case, the allocation

of player 1 is

gE2-PYS1 (s1, s2) =
1

β
− 1

β
exp

(
− β

β − 1
· s1
s2

)
and, thus, the derivative is equal to

∂gE2-PYS1 (y, s2)

∂y

∣∣∣∣
y=s1

=
1

(β − 1)s2
exp

(
− β

β − 1
· s1
s2

)
.
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Therefore, λE2-PYS1 (s) is defined as

λE2-PYS1 (s) = (β − 1)s2 exp
(

β

β − 1
· s1
s2

)
.

By substituting pE2-PYS2 (s), λE2-PYS1 (s), and gE2-PYS1 (s) in (2.6), we obtain

pE2-PYS2 (s) + λE2-PYS1 (s)
pE2-PYS2 (s) + λE2-PYS1 (s) gE2-PYS1 (s)

=
s2 + (β − 1)s2 exp

(
β

β−1 ·
s1
s2

)
s2 +

β−1
β s2 exp

(
β

β−1 ·
s1
s2

)(
1− exp

(
− β

β−1 ·
s1
s2

)) = β.

(2.12)

For the second case where s1 > s2, we have that

gE2-PYS1 (s1, s2) =
β − 1

β
+

1

β
exp

(
− β

β − 1
· s2
s1

)
and

∂gE2-PYS1 (y, s2)

∂y

∣∣∣∣
y=s1

=
s2

(β − 1)s21
exp

(
− β

β − 1
· s2
s1

)
.

Now, it is

λE2-PYS1 (s) = (β − 1)s21
s2

exp
(

β

β − 1
· s2
s1

)
.

By substituting pE2-PYS2 (s), λE2-PYS1 (s), and gE2-PYS1 (s) in (2.6), we obtain

pE2-PYS2 (s) + λE2-PYS1 (s)
pE2-PYS2 (s) + λE2-PYS1 (s) gE2-PYS1 (s)

= β
1 + (β − 1)

(
s1
s2

)2
exp

(
β

β−1 ·
s2
s1

)
β + (β − 1)2

(
s1
s2

)2
exp

(
β

β−1 ·
s2
s1

)
+ (β − 1)

(
s1
s2

)2 ≤ β.

(2.13)

The inequality follows since the quantity at its left is decreasing in s1/s2 (its derivative with

respect to s1/s2 can be shown by tedious calculations to be non-positive for s1/s2 ≥ 1) and,

hence, it is upper-bounded by its value for s1/s2 = 1; this is equal to β by its definition.

The theorem follows by Lemma 2.3 using (2.12) and (2.13).

We remark that a preliminary analysis similar to the first half of the proof of Theorem

2.8 inspired the design of the E2-PYS mechanism (as well as that of E2-SR mechanism that

is defined later) at first place. By keeping the allocation function as the unknown and requiring

that the RHS of (2.6) is equal to some value α for all signal vectors s ∈ X2 with s1 ≤ s2 (this is

essentially what (2.12) captures), we obtained a first-order differential equation which, using

the appropriate conditions so that the resulting mechanism is valid, led to E2-PYS (for α = β).

Luckily, for signal vectors s ∈ X2 with s1 > s2, we were able to show that the RHS of (2.6) is at

most α; see inequality (2.13).
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We now show that E2-PYS has optimal LPoA among 2-player PYS mechanisms in class

C. The proof makes use of Lemma 2.3 and a simple differential inequality that involves the

allocation function.

Theorem 2.9. Any 2-player PYS mechanism with concave allocation function has liquid price of

anarchy at least β ≈ 1.792.

Proof. For the sake of contradiction, assume that there exists a PYS mechanism M that has

liquid price of anarchy β′ < β. Denote by f : R≥0 → [0, 1] the function defined as f(y) =

gM1 (y, 1). Then, by applying Lemma 2.3 with s = (y, 1) ∈ X2 toM we have λM
1 (y, 1) = 1/f ′(y)

and LPoA(M) ≥ 1+1/f ′(y)
1+f(y)/f ′(y) for every y ∈ [0, 1]. By our assumption LPoA(M) ≤ β′, we get the

differential inequality

(β′ − 1)f ′(y) + β′f(y) ≥ 1

for every y ∈ [0, 1]. Using Grönwall’s inequality, f(y) is lower-bounded by the solution of the

corresponding differential equation. Due to the condition f(0) = 0, this yields

f(y) ≥ 1

β′ −
1

β′ exp
(
− β′

β′ − 1
y

)
and, hence,

1

2
= f(1) ≥ 1

β′ −
1

β′ exp
(
− β′

β′ − 1

)
>

1

β
− 1

β
exp

(
− β

β − 1

)
,

which contradicts the definition of β. The last inequality follows since the function 1
z −

1
z exp

(
− z

z−1

)
is decreasing in the interval [1, 2].

2.7.2 The E2-SR mechanism

Let us now define a non-PYS mechanism that has considerably better LPoA than E2-PYS and

almost matches the lower bound of 3/2 from Theorem 2.1 for 2-player mechanisms. Let γ ≈

1.529 be the solution of the equation 1
γ −

1
γ exp

(
− γ

2(γ−1)

)
= 1

2 and define mechanism E2-SR to

be the 2-player mechanism that uses the allocation function (see Figure 2.3 for a comparison of

the allocation functions of Kelly, SH, E2-PYS, and E2-SR)

gE2-SRi (s) =


1
γ −

1
γ exp

(
− γ

2(γ−1) ·
(

si
s3−i

)2)
si ≤ s3−i

γ−1
γ + 1

γ exp
(
− γ

2(γ−1) ·
(
s3−i

si

)2)
si > s3−i

and the payment function pE2-SRi (s) = si/s3−i for player i ∈ {1, 2} and (non-zero) signal vector

s = (s1, s2). By the general conventions of Section 2.3, the payments are 0 when some of the
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Figure 2.3: A comparison of the allocation function gMi used by E2-PYS (in green), (the 2-player

version of) Kelly (in blue), SH (dashed), and E2-SR (in red) as a function of si/s3−i for si ≤ s3−i.

Among these mechanisms, E2-SR is the only one with a non-concave allocation function.

signals is equal to zero. Due to the definition of γ, E2-SR is a well-defined resource allocation

mechanism. However, observe that E2-SR does not belong to class C (the allocation function

is not concave; see Figure 2.3) and the condition s ∈ eq(GE2-SR(s, 1)) is not guaranteed to be

satisfied. Next, we will prove an upper bound on the LPoA of E2-SR. The proof follows in a

similar way to the proof of Theorem 2.8, but it does not provide a tight bound.

Theorem 2.10. The liquid price of anarchy of the E2-SR mechanism is at most γ ≈ 1.529.

Proof. We will prove the theorem by mimicking the proof of Theorem 2.8. Let s ∈ X2. Again,

we distinguish between two cases. First, assume that s1 ≤ s2. Then, since

gE2-SR1 (s1, s2) =
1

γ
− 1

γ
exp

(
− γ

2(γ − 1)
·
(
s1
s2

)2
)
,

the derivative of the allocation for player 1 is

∂gE2-SR1 (y, s2)

∂y

∣∣∣∣
y=s1

=
s1

(γ − 1)s22
exp

(
− γ

2(γ − 1)
·
(
s1
s2

)2
)
.

Also, since the payment function used by E2-SR is equal to the signal ratio, its derivative for

player 1 is

∂pE2-SR1 (y, s2)

∂y

∣∣∣∣
y=s1

=
1

s2
.

Therefore,

λE2-SR1 (s) = (γ − 1)
s2
s1

exp

(
γ

2(γ − 1)
·
(
s1
s2

)2
)
.
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By substituting pE2-SR2 (s), λE2-SR1 (s), and gE2-SR1 (s) to (2.6), we can now easily verify that

pE2-SR2 (s) + λE2-SR1 (s)
pE2-SR2 (s) + λE2-SR1 (s) gE2-SR1 (s)

= γ. (2.14)

For the second case where s1 > s2, the allocation is defined as

gE2-SR1 (s1, s2) =
γ − 1

γ
+

1

γ
exp

(
− γ

2(γ − 1)
·
(
s2
s1

)2
)

and the derivative is

∂gE2-SR1 (y, s2)

∂y

∣∣∣∣
y=s1

=
s22

(γ − 1)s31
exp

(
− γ

2(γ − 1)
·
(
s2
s1

)2
)
.

The payment derivative is again equal to 1/s2 and, hence,

λE2-SR1 (s) = (γ − 1)

(
s1
s2

)3

exp

(
γ

2(γ − 1)
·
(
s2
s1

)2
)
.

By substituting pE2-SR2 (s), λE2-SR1 (s), and gE2-SR1 (s), we obtain

pE2-SR2 (s) + λE2-SR1 (s)
pE2-SR2 (s) + λE2-SR1 (s) gE2-SR1 (s)

= γ

1 + (γ − 1)
(
s1
s2

)4
exp

(
γ

2(γ−1) ·
(
s2
s1

)2)
γ + (γ − 1)2

(
s1
s2

)4
exp

(
γ

2(γ−1) ·
(
s2
s1

)2)
+ (γ − 1)

(
s1
s2

)4 ≤ γ.

(2.15)

The inequality follows because the quantity at its left is decreasing in s1/s2 (its derivative with

respect to s1/s2 can be shown by tedious calculations to be non-positive for s1/s2 ≥ 1) and,

hence, it is upper-bounded by its value for s1/s2 = 1; this is equal to γ by its definition.

The theorem follows by Lemma 2.3 using (2.14) and (2.15).

Interestingly, a simpler 2-player mechanism that uses the allocation function of SH and

the signal-ratio payment function of E2-SR has a slightly worse LPoA of ϕ = 1.618. In fact, this

bound is tight since this particular mechanism belongs to class C. The proof is left as an exercise

to the reader.

2.8 Some extensions

In this section, we will shortly discuss two possible extensions of our work. In particular, we

will discuss the possibility of achieving improved LPoA bounds (1) via mechanisms that have

access to the player budgets, and (2) by allowing the players to be more expressive and submit

signals that carry more information.
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2.8.1 Budget-aware mechanisms

All of our work so far in this chapter has focused on the scenario where the budget of each

player is private. Let us now discuss a bit the case of budget-aware mechanisms, which have

access to the budget value of each player.

It is easy to verify that our analysis for mechanisms Kelly, SH, E2-PYS, and E2-SR carries

over to this case. In contrast, our lower bound (Theorem 2.1) is not true anymore. The proof

constructs two games, in which almost every player has different budgets. The main property

that we exploited (for non-budget-aware mechanisms) is that the strategic behavior of the

players results in the same set of equilibria in both games. This argument fails for budget-

aware mechanisms; a small change in the budget of a single player could be enough to alter

the set of equilibria. So, in principle, one might hope even for full efficiency at equilibria (LPoA

equal to 1) in this case, analogously to the results of Maheswaran and Basar [2006], Johari and

Tsitsiklis [2009], and Yang and Hajek [2007] in the no-budget setting. Interestingly, our next

statement rules out this possibility.

Theorem 2.11. For n ≥ 2, every n-player budget-aware resource allocation mechanism has liquid price

of anarchy at least 4/3.

Proof. Let M be any n-player budget-aware resource allocation mechanism that uses an

allocation function gM and a payment function pM . Let s = (s1, ..., sn) be an equilibrium of

the game GM1 induced by M for players with valuations vi(x) = x for i ∈ {1, 2} and vi(x) = 0

for i ≥ 3, and budgets ci = 1 for every i ∈ [n]. Assume that the allocation returned byM at this

equilibrium is d = (d1, ..., dn). Without loss of generality, we may assume that one of the first

two players (say, player 1) gets a resource share of at most 1/2.

Recall that, for every signal vector y, the utility of any player i is defined as uMi (y) =

vi(g
M
i (y)) − pMi (y). Now, consider the game GM2 where player 2 has the modified valuation

function ṽ2(x) = 1 + x while all other players are as in GM1 ; the budgets are the same in both

games and are known to the mechanism. Observe that the modified utility of player 2 is now

ũM2 (y) = ṽ2(g
M
2 (y)) − pM2 (y) = uM2 (y) + 1. Hence, s is an equilibrium in GM2 as well and M

returns the same allocation d again.

Clearly, due to the definition of the valuation functions, the contribution of players i ≥ 3 in

the liquid welfare (in any state of the game) is zero. Hence, the liquid welfare at equilibrium

is min{ṽ1(d1), c1} +min{ṽ2(d2), c2} = d1 + 1 ≤ 3/2, while the optimal liquid welfare is equal
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to 2, achieved at the allocation according to which the whole resource is given to player 1. We

conclude that the liquid price of anarchy ofM is LPoA(M) ≥ LPoA(GM2 ) ≥ 4/3, as desired.

In spite of the lower bound in Theorem 2.11, whether budget-aware resource allocation

mechanisms can have an LPoA better than 2− 1/n is an important open problem.

2.8.2 Higher expressiveness

Another extension of our setting could be to allow the players to declare their budget to the

mechanism in addition to their scalar signal. Taking this approach to its extreme, one could

imagine resource allocation mechanisms which ask the players to submit multi-dimensional

signals. At first glance, this seems to lead to much more powerful mechanisms than the ones

we have considered here. Surprisingly, this higher level of expressiveness has no consequences to

the LPoA at all and our lower bound of 2 − 1/n captures such mechanisms as well. Indeed,

by inspecting the two games used in the proof of Theorem 2.1, we can verify that the same

signal vector (no matter whether signals are single- or multi-dimensional) leads to the same

allocation by the mechanism and the same strategic behavior of the players in both games.

This observation applies to the proof of Theorem 2.11 as well.

2.9 Conclusion

In this chapter, we studied the efficiency of resource allocation mechanisms for users with

private concave valuation functions and budget constraints, who compete over the acquisition

of a single divisible resource. Using the liquid welfare as our efficiency benchmark, we showed

a completely different picture compared to the no-budget case, for which there exist fully

efficient mechanisms that align the global objective of maximizing the social welfare with the

strategic objectives of the players.

First, we proved a lower bound of 2 − 1/n on the liquid price of anarchy of any n-player

resource allocation mechanism, which indicates that there exist no fully efficient mechanisms

in the case where the players have budgets. Then, we characterized the worst-case games and

equilibria with respect to the liquid price of anarchy, and used this characterization to prove

tight bounds on the well-known Kelly and SHmechanisms (2 and 3, respectively). Further, we

exploited our characterization to design the improved mechanisms E2-PYS and E2-SR for the

case of two players that achieve an LPoA of approximately 1.79 and 1.53, respectively.
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Chapter 3

Bounding the inefficiency of
compromise in opinion formation

In this chapter, we study questions related to the existence, computational complexity, and

quality of equilibria in k-compromising opinion formation (k-COF) games; see the discussion

in Section 1.2 for a high-level introduction to the problem. These results have been published

in [Caragiannis et al., 2017a].

3.1 Overview of contribution and techniques

We begin by proving several properties about the geometric structure of opinions and beliefs

at pure Nash equilibria (states of the game where each player minimizes her individual cost

assuming that the remaining players will not change their opinions).

Using these structural properties we show that there exist simple k-COF games that do not

admit pure Nash equilibria. Furthermore, we prove that even in games where equilibria do

exist, their quality may be suboptimal in terms of the social cost (the total cost experienced by

all players), by showing that the price of stability grows linearly with k. For the special case

of 1-COF games, we show that each such game admits a representation as a directed acyclic

graph, in which every pure Nash equilibrium corresponds to a path between two designated

nodes. Hence, the problems of computing the best or worst (in terms of the social cost) pure

Nash equilibrium (or even of computing whether such an equilibrium exists) are equivalent to

simple path computations that can be performed in polynomial time.

For general k-COF games, we quantify the inefficiency of the worst-case pure equilibria

by bounding the price of anarchy. Specifically, we present upper and lower bounds on the

price of anarchy of k-COF games (with respect to both pure and mixed Nash equilibria) that
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k PoA MPoA PoS Existence/Complexity
1 3 (Thms 3.19, 3.20) ≥ 6 ≥ 17/15 PNE may not exist for any k

(Thm. 3.21) (Thm. 3.8) (Thm. 3.6)

2 ≤ 12 (Thm. 3.12) ≥ 24/5 ≥ 8/7 Best and worst PNE is in P
≥ 18/5 (Thm. 3.22) (Thm. 3.23) (Thm. 3.9) (Thm. 3.10)

≥ 3 ≤ 4(k + 1) (Thm. 3.12) ≥ k + 2 ≥ k+1
3 Open question: Is computing a

≥ k + 1 (Thm. 3.22) (Thm. 3.23) (Thm. 3.7) PNE in P when k ≥ 2?

Table 3.1: Summary of our results for k-COF games. The table presents our bounds on the price

of anarchy over pure Nash equilibria (PoA) andmixed Nash equilibria (MPoA), on the price of

stability (PoS) as well as the existence and complexity of pure Nash equilibria (PNE). Clearly,

any upper bound on the price of anarchy is also an upper bound on the price of stability. See

[Caragiannis et al., 2017a].

suggest a linear dependence on k. Our upper bound on the price of anarchy exploits, in a non-

trivial way, linear programming duality in order to lower-bound the optimal social cost. For

the fundamental case of 1-COF games, we obtain a tight bound of 3 using a particular charging

scheme in the analysis. Our contribution is summarized in Table 3.1.

3.1.1 Chapter roadmap

In the following, we begin with a discussion of the bibliography that is related to opinion

formation and to our work in particular. Then, in Section 3.2, we continue with preliminary

definitions, notation and examples in Section 3.3. In Section 3.4 we present several structural

properties of pure Nash equilibria, while Section 3.5 is devoted to the existence and the price of

stability of these equilibria. Then, in Section 3.6 we present a polynomial-time algorithm that

determines whether pure Nash equilibria exist in 1-COF games, and, in addition, computes

the best and worst such equilibria, when they do exist. In Sections 3.7 and 3.8 we prove

upper bounds on the price of anarchy for general k-COF and 1-COF games, respectively, while

Section 3.9 contains our lower bounds on the price of anarchy. We conclude with a synopsis of

our results in Section 3.10.

3.2 Related work

DeGroot [1974] proposed a framework that models the opinion formation process, where each

individual updates her opinion according to a weighted averaging procedure. Subsequently,

Friedkin and Johnsen [1990] refined the model by assuming that each individual has a private
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belief and expresses a (possibly different) public opinion that depends on her belief and the

opinions of the people in her social circle. More recently, Bindel et al. [2015] studied this model

and proved that, for the setting where beliefs and opinions are real numbers in the interval

[0, 1], the repeated averaging process leads to an opinion vector that can be thought of as the

unique equilibrium in a corresponding opinion formation game.

Deviating from the assumption that opinions depend on the whole social circle, Bhawalkar

et al. [2013] considered co-evolutionary opinion formation games, where as opinions evolve so

does the neighborhood of each person. This model is conceptually similar to previous ones that

have been studied by Hegselmann and Krause [2002], and Holme and Newman [2006]. Both

Bindel et al. [2015] and Bhawalkar et al. [2013] proved constant bounds on the price of anarchy

of the games that they study. In contrast, the modified cost function we used in this chapter in

order to model compromise yields considerably higher price of anarchy, that depends linearly

on the size of the neighborhood.

A series of recent papers in the EconCS community considered discrete opinion formation

models with binary opinions. Chierichetti et al. [2018] considered discrete preference games,

where beliefs and opinions are binary and study questions related to the price of stability. For

these games, Auletta et al. [2015, 2017a] characterized the social networks where the belief of

the minority can emerge as the opinion of the majority, while Auletta et al. [2017b] examined

the robustness of such results to variants of the model. Auletta et al. [2016] generalized the

class of discrete preference games so that the players are not only interested in agreeing with

their neighbors, but more complex constraints can be used to represent the preferences of the

players. Bilò et al. [2016] extended the class of co-evolutionary formation games to the discrete

setting. Other models assume that opinion updates do not depend on the entire social circle

of each individual; instead, each person consults only a small random subset of her social

acquaintances; see the recent paper by Fotakis et al. [2016] as well as the survey of Mossel

and Tamuz [2014].

In scenarios where there are more than one issues to be discussed, Jia et al. [2015] proposed

and analyzed the DeGroot-Friedkin model for the evolution of an influence network between

individuals who form opinions on a sequence of issues, while Xu et al. [2015] introduced a

modification according to which each individual may recalculate the weight assigned to her

opinion (her self-confidence), after the discussion of each issue with her social circle.

Another line of research has focused on how fast a system converges to a stable state. In this
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spirit, Etesami and Basar [2015] considered the dynamics of the co-evolutionary Hegselmann-

Krause model [2002] and focused on the termination time in finite dimensions under different

settings. Similarly, Ferraioli et al. [2016] studied the convergence of decentralized dynamics in

finite opinion games, where players have only a finite number of opinions available. Ferraioli

and Ventre [2017] considered the role of social pressure towards consensus in opinion games

and provide tight bounds on the speed of convergence for the important special case where the

social network is a clique.

Das et al. [2014] performed a set of online user studies and argued that widely studied

theoretical models do not completely explain the experimental results obtained. Hence, they

introduced an analytical model for opinion formation and presented preliminary theoretical

and simulation results on the convergence and structure of opinions when users iteratively

update their respective opinions according to the new model.

Chazelle [2012] analyzed influence systems, where each individual observes the location

of her neighbors and moves accordingly, and presented an algorithmic calculus for studying

such systems. Kempe et al. [2016] presented a novelmodel of cultural dynamics and focused on

the interplay between selection and influence. Among other results, they presented an almost

complete characterization of stable outcomes and showed that convergence is guaranteed from

all starting states. Gomez-Rodriguez et al. [2012] considered network diffusion and contagion

propagation. Their goal was to infer an unknown network over which contagion propagated,

tracing paths of diffusion and influence. Finally, Kempe et al. [2015] studied the optimization

problem for influence maximization in a social networks, where each individual may decide to

adopt an idea or an innovation depending on howmany of her neighbors already do. The goal

is to select an initial seed set of early adopters so that the number of adopters is maximized.

3.3 Definitions and notation

A compromising opinion formation game defined by the k nearest neighbors (henceforth,

called k-COF game) is played by a set of n players whose beliefs lie on the line of real numbers.

Let s = (s1, s2, . . . , sn) ∈ Rn be the vector containing the players’ beliefs such that si ≤ si+1

for each i ∈ [n − 1]. Let z = (z1, z2, . . . , zn) ∈ Rn be a vector containing the (deterministic or

randomized) opinions expressed by the players; these opinions define a state of the game. We

denote by z−i the opinion vector obtained by removing zi from z. In an attempt to simplify

notation, we omit k from all relevant definitions.
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Given vector z (or a realization of it in case z contains randomized opinions), we define

the neighborhood Ni(z, s) of player i to be the set of k players whose opinions are the closest

to the belief of player i breaking ties arbitrarily (but consistently). For each player i, we define

Ii(z, s) as the shortest interval of the real line that includes the following points: the belief si, the

opinion zi, and the opinion zj for each player j ∈ Ni(z, s). Furthermore, let ℓi(z, s) and ri(z, s) be

the players with the leftmost and rightmost point in Ii(z, s), respectively. For example, ℓi(z, s)

can be equal to either player i or some player j ∈ Ni(z, s), depending on whether the leftmost

point of Ii(z, s) is si, zi, or zj . To further simplify notation, we will frequently use ℓ(i) and r(i)

instead of ℓi(z, s) and ri(z, s) when z and s are clear from the context. In the following, we

present the relevant definitions for the case of possibly randomized opinion vectors; clearly,

these can be simplified whenever z consists entirely of deterministic opinions.

Given a k-COF game with belief vector s, the cost that player i experiences at the state of

the game defined by an opinion vector z is

E[costi(z, s)] = E
[

max
j∈Ni(z,s)

{
|zi − si|, |zj − zi|

}]
= E

[
max

{
|zi − si|, |zri(z,s) − zi|, |zi − zℓi(z,s)|

}]
. (3.1)

For the special case of 1-COF games, we denote by σi(z, s) (or σ(i)when z and s are clear from

the context) the player (other than i) whose opinion is closest to the belief si of player i; notice

that σ(i) is the only member of Ni(z, s). In this case, the cost of player i can be simplified as

E[costi(z, s)] = E
[
max

{
|zi − si|, |zσi(z,s) − zi|

}]
. (3.2)

We say that an opinion vector z consisting entirely of deterministic opinions is a pure Nash

equilibrium if no player i has an incentive to unilaterally deviate to a deterministic opinion z′i in

order to decrease her cost, i.e.,

costi(z, s) ≤ costi((z′i, z−i), s),

where by (z′i, z−i) we denote the opinion vector in which player i chooses the opinion z′i and

all other players choose the opinions they have according to vector z. Similarly, a possibly

randomized opinion vector z is a mixed Nash equilibrium if for any player i and any deviating

deterministic opinion z′i we have

E[costi(z, s)] ≤ Ez−i [costi((z
′
i, z−i), s)].
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Let PNE(s) andMNE(s) denote the sets of pure andmixed Nash equilibria, respectively, of the

k-COF game with belief vector s.

The social cost of an opinion vector z is the total cost experienced by all players, i.e.,

E[SC(z, s)] =
n∑

i=1

E[costi(z, s)].

Let z∗(s) be a deterministic opinion vector that minimizes the social cost for the given k-COF

game with belief vector s; we will refer to it as an optimal opinion vector for s.

The price of anarchy (PoA) over pure Nash equilibria of a particular k-COF game with belief

vector s is defined as the ratio between the social cost of its worst (in terms of the social cost)

pure Nash equilibrium and the optimal social cost, i.e.,

PoA(s) = sup
z∈PNE(s)

SC(z, s)
SC(z∗(s), s)

.

The price of stability (PoS) over pure Nash equilibria of the k-COF game with belief vector s is

defined as the ratio between the social cost of the best pure Nash equilibrium (in terms of social

cost) and the optimal social cost, i.e.,

PoS(s) = inf
z∈PNE(s)

SC(z, s)
SC(z∗(s), s)

.

Similarly, the price of anarchy and the price of stability over mixed Nash equilibria of a

k-COF game with belief vector s are defined as

MPoA(s) = sup
z∈MNE(s)

E[SC(z, s)]
SC(z∗(s), s)

and

MPoS(s) = inf
z∈MNE(s)

E[SC(z, s)]
SC(z∗(s), s)

,

respectively.

Then, the price of anarchy and the price of stability of k-COFgames, for a fixed k, are defined

as the supremum of PoA(s) and PoS(s) over all belief vectors s, respectively.

Example 3.1. Consider the 1-COF game with three players and belief vector s = (−10, 2, 5)

which is depicted in Figure 3.1(a). For simplicity, we will refer to the players as left (ℓ), middle

(m), and right (r).

Let us examine the opinion vector z = (−10,−5, 4) which is depicted in Figure 3.1(b). We

have that σ(ℓ) = m since the opinion zm = −5 of the middle player is closer to the belief

42



sℓ = −10 of the left player than the opinion zr = 4 of the right player. Therefore, the cost of

the left player is costℓ(z, s) = max{| − 10 + 10|, | − 10 + 5|} = 5. Similarly, the neighbors of

the middle and right players are σ(m) = r and σ(r) = m, while their costs are costm(z, s) =

max{2 + 5, 4 + 5} = 9 and costr(z, s) = max{5 − 4, 4 + 5} = 9, respectively. The social cost is

SC(z, s) = 23.

Now, consider the alternative pure Nash equilibrium opinion vector z′ = (−3.5, 3, 4)which

is depicted in Figure 3.1(c). Observe that even though z′ ̸= z, each player has the same neighbor

as in z and no player has an incentive to deviate in order to decrease her cost. Indeed, let us

focus on the middle player for whom it is σ(m) = r. Her opinion is in the middle of the interval

defined by her belief sm = 3 and the opinion z′r = 5 of the right player. Hence, this opinion

minimizes her cost by minimizing the maximum between the distance from her belief and the

distance from the opinion of the right player. It is easy to verify that the same holds for the left

and right players. The player costs are now 6.5, 1, and 1, respectively, yielding a social cost of

8.5.

3.4 Some properties about equilibria

We devote this section to proving several some interesting properties of pure Nash equilibria;

these will be useful in the following. The first one is obvious due to the definition of the cost

function.

Lemma 3.1. In any pure Nash equilibrium z of a k-COF game with belief vector s, the opinion of any

player i lies in the middle of the interval Ii(z, s).

The next lemma allows us to argue about the order of player opinions in any pure Nash

equilibrium z.

Lemma 3.2. In any pureNash equilibrium z of a k-COF gamewith belief vector s, it holds that zi ≤ zi+1

for any i ∈ [n− 1] such that si < si+1.

Proof. For the sake of contradiction, let us assume that zi+1 < zi for a pair of players i and i+1

with si < si+1. Then, it cannot be the case that the leftmost endpoint of the interval Ii(z, s) of

player i is at the left of (or coincideswith) the leftmost endpoint of interval Ii+1(z, s) of player i+

1 and the rightmost endpoint of Ii(z, s) is at the left of (or coincideswith) the rightmost endpoint

of Ii+1(z, s). In other words, it cannot be the case that min{si, zℓ(i)} ≤ min{si+1, zℓ(i+1)} and
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(a)

−10 2 5−5 4

(b)

−10 2 5−3.5 3 4

(c)

Figure 3.1: The game examined in Example 3.1. (a) Illustration of the belief vector s =

(−10, 2, 5). The black squares correspond to player beliefs, while the notation [x] is used to

denote the number of players that have the same beliefs; here we have only one player per

belief. (b) Illustration of the opinion vector z = (−10,−5, 4). The dots correspond to player

opinions and each arrow connects the belief of a player to her opinion. (c) Illustration of the

equilibrium opinion vector z′ = (−3.5, 3, 4).

max{si, zr(i)} ≤ max{si+1, zr(i+1)} hold simultaneously. Since, by Lemma 3.1, points zi and

zi+1 lie in the middle of the corresponding intervals, we would have zi ≤ zi+1, contradicting

our assumption.

So, at least one of the two inequalities between the interval endpoints above must not

hold. In the following, we assume that min{si, zℓ(i)} > min{si+1, zℓ(i+1)} (the case where

max{si, zr(i)} > max{si+1, zr(i+1)} is symmetric). This assumption implies that zℓ(i+1) < si <

si+1 (i.e., min{si+1, zℓ(i+1)} = zℓ(i+1)), and, subsequently, that zℓ(i+1) < zℓ(i). In words, player

ℓ(i + 1) does not belong to interval Ii(z, s). Furthermore, since zℓ(i+1) < si+1, and as (by

Lemma 3.1) zi+1 lies in the middle of Ii+1(z, s), we also have that the leftmost endpoint of

interval Ii+1(z, s) cannot belong to player i+1, i.e., ℓ(i+1) ̸= i+1. An example of the relative

ordering of points (beliefs and opinions), after assuming that zi+1 < zi and min{si, zℓ(i)} >

min{si+1, zℓ(i+1)} is depicted in Figure 3.2.

Since ℓ(i + 1) does not belong to Ii(z, s), there are at least k players different than ℓ(i + 1)

and i that have opinions at distance at most si − zℓ(i+1) from belief si. Since si < si+1 and
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z`(i+1) z`(i) si zi+1 zi si+1

Ii+1(z, s) · · ·

Ii(z, s) · · ·

Figure 3.2: An example of the argument used in the proof of Lemma 3.2.

zℓ(i+1) < zℓ(i), all these players are also at distance strictly less than si+1 − zℓ(i+1) from belief

si+1. This contradicts the fact that the opinion of player ℓ(i+1) is among the k closest opinions

to si+1.

In the following, in any pure Nash equibrium z, we assume that zi ≤ zi+1 for any i ∈ [n−1].

This follows by Lemma 3.2when si < si+1 and by a convention for the identities of playerswith

identical belief.

In addition to the ordering of opinions in a pure Nash equilibrium, we can also specify the

range of neighborhoods (in Lemma 3.3) and opinions (in Lemma 3.4).

Lemma 3.3. Let z be a pure Nash equilibrium of a k-COF game with belief vector s. Then, for each

player i, there exists j with i − k ≤ j ≤ i such that Ii(z, s) is the shortest interval that contains the

opinions zj , zj+1, ..., zj+k and belief si.

Proof. If Ii(z, s) consists of a single point, the lemma follows trivially by the definition of the

neighborhood and Lemma 3.2 since at least k + 1 consecutive players including i should have

opinions in Ii(z, s). Otherwise, by Lemma 3.2, the statement is true if there is at most one

opinion in each of the left and the right boundary of Ii(z, s); in this case, there are exactly k+1

consecutive players including player iwith opinions in Ii(z, s).

In the following, we will handle the subtleties that may arise due to tie-breaking on the

boundaries of Ii(z, s). Let Yℓ and Yr be the set of players with opinions at the leftmost and the

rightmost point of Ii(z, s), respectively. From Lemma 3.1, player i belongs neither to Yℓ nor to

Yr. Now consider the following set of players: the |Yℓ ∩ Ni(z, s)| players with highest indices

from Yℓ, the |Yr ∩ Ni(z, s)| players with lowest indices from Yr and all players with opinions

that lie strictly in Ii(z, s). Due to the definition of Ni(z, s) and by Lemma 3.2, there are k + 1

players in this set, including player i, with consecutive indices.
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s`(i) si sr(i) zi zr(i) zr(r(i))

Ir(i)(z, s)· · ·

Figure 3.3: An example of the argument used in the proof of Lemma 3.4.

In the following, irrespectively of how ties are actually resolved, we assume that Ni(z, s) ∪ {i}

consists of k + 1 players with consecutive indices. This does not affect the cost of player i at

equilibrium in the proofs of our upper bounds (since, by Lemma 3.3, the interval defined is

exactly the same), while our lower bound constructions are defined carefully so that the results

hold no matter how ties are actually resolved.

Lemma 3.4. Let z be a pure Nash equilibrium of a k-COF game with belief vector s. Then, for each

player i, it holds that sℓ(i) ≤ zi ≤ sr(i).

Proof. SinceNi(z, s)∪{i} consists of k+1 players with consecutive indices, we have that sℓ(i) ≤

si ≤ sr(i). For the sake of contradiction, let us assume that sℓ(i) ≤ sr(i) < zi for some player i

(the casewhere zi lies at the left of sℓ(i) is symmetric). Since sr(i) < si and as zi is at themiddle of

Ii(z, s), it holds that zr(i) > zi (i.e., r(i) ̸= i). Also, since zr(i) > zi > sr(i), and because zr(i) is in

the middle of Ir(i)(z, s), it holds that zr(r(i)) > zr(i) and, by Lemma 3.2, r(r(i)) > r(i); see Figure

3.3 for an example of the relative ordering of points (beliefs and opinions) when assuming that

sr(i) < zi.

We now claim that ℓ(i) /∈ Nr(i)(z, s). Assume otherwise that ℓ(i) ∈ Nr(i)(z, s). By definition,

r(r(i)) ∈ Nr(i)(z, s). Then, Lemma 3.2 implies that any player j, different than r(i), with ℓ(i) <

j < r(r(i)) is also inNr(i)(z, s). Hence,Nr(i)(z, s) contains at least the k− 1 players inNi(z, s) \

{r(i)}, as well as players i and r(r(i)). This, however, contradicts the fact that |Nr(i)(z, s)| = k.

Therefore, player ℓ(i) is not among the k nearest neighbors of r(i).

So, we obtain that

zr(r(i)) − sr(i) > zr(i) − sr(i) > zr(i) − zi = zi −min{si, zℓ(i)}

> sr(i) −min{si, zℓ(i)} ≥ sr(i) − zℓ(i).

If zℓ(i) > sr(i) (i.e, zℓ(i) is at the right of sr(i)), then since, by Lemma 3.2, zℓ(i) ≤ zr(r(i)) and

r(r(i)) ∈ Nr(i)(z, s), we obtain that ℓ(i) ∈ Nr(i)(z, s) as well; a contradiction. Otherwise, the
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above inequality yields that zr(r(i))−sr(i) > sr(i)−zℓ(i) ≥ 0 (i.e., the distance of sr(i) from zr(r(i))

is strictly higher than the distance of sr(i) from zℓ(i)), and, again, we obtain a contradiction to

the fact that ℓ(i) /∈ Nr(i)(z, s) and r(r(i)) ∈ Nr(i)(z, s).

3.5 Existence and quality of equilibria

Our first technical contribution is a negative statement: pure Nash equilibria may not exist for

any k (Theorem 3.6). Then, we show that even in games that admit pure Nash equilibria, the

best equilibriummay be inefficient; in other words, the price of stability is strictly greater than

1 for any value of k, and, actually, depends linearly on k. These results appear in Theorems 3.7,

3.8, and 3.9.

3.5.1 Existence of equilibria

We begin with a technical lemma. The lemma essentially presents necessary conditions so that

a particular set of neighborhoods, and corresponding intervals, may coexist in a pure Nash

equilibrium.

Lemma 3.5. Consider a k-COF game and any three players a, b, c with beliefs sa ≤ sb ≤ sc,

respectively. For any pure Nash equilibrium z where Ia(z, s) = [sa, zb], Ib(z, s) = [sb, zc] and

Ic(z, s) = [zb, sc], it must hold that sb ≥ 3sa+5sc
8 , while for any pure Nash equilibrium z where

Ia(z, s) = [sa, zb], Ib(z, s) = [za, sb] and Ic(z, s) = [zb, sc], it must hold that sb ≤ 5sa+3sc
8 .

Proof. It suffices to prove the first case; the second case is symmetric. Since Ib(z, s) = [sb, zc]

and Ic(z, s) = [zb, sc], by Lemma 3.1 it holds that zb = (sb + zc)/2 and zc = (zb + sc)/2 which

yield that zb = sb +
sc−sb

3 and zc = sb +
2(sc−sb)

3 . Hence, we obtain that

zc − sb =
2(sc − sb)

3
. (3.3)

Similarly, since Ia(z, s) = [sa, zb], it holds that za = sa+zb
2 = 3sa+2sb+sc

6 and, therefore, we obtain

that

sb − za =
−3sa + 4sb − sc

6
. (3.4)

Since Ib(z, s) = [sb, zc], we have that a /∈ Nb(z, s) and, subsequently, that zc−sb ≤ sb−za which,

together with (3.3) and (3.4), yields that sb ≥ 3sa+5sc
8 as desired.

The proof of the next theorem is inspired by a construction of Bhawalkar et al. [2013] and

exploits Lemma 3.5.
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Theorem 3.6. For any k, there exists a k-COF game with no pure Nash equilibria.

Proof. Consider a k-COF game with 2k+ 1 players partitioned into three sets called L,M , and

R, where L and R each contain k players, whileM = {m} is a singleton. We set si = 0 for each

i ∈ L, si = 2 for each i ∈ R, while sm = 1 − ϵ, where ϵ < 1/4 is an arbitrarily small positive

constant.

Let us assume that there exists a pure Nash equilibrium z. Then, clearly, for any i ∈ L it

must hold thatNi(z, s) = L\{i}∪{m}, and, therefore, Ii(z, s) = [0, zm]. Similarly, for any i ∈ R

we have Ni(z, s) = R \ {i} ∪ {m}, and Ii(z, s) = [zm, 2]. Now, concerning player m, if all her

neighbors are in L, then, it holds that Im(z, s) = [zi, sm] for some i ∈ L. But then, observe that

even though the intervals defined above exhibit the structure described in Lemma 3.5, the belief

vector s does not satisfy the corresponding necessary conditions of that lemma as 1− ϵ > 3/4;

hence, z is not a pureNash equilibrium. The same reasoning applies in case all ofm’s neighbors

are in R.

It remains to consider the case wherem has at least one neighbor in each of L andR. By the

definition of Ii(z, s) for i ∈ L ∪ R, as stated above, Lemma 3.1 implies that zi = zm/2 for any

i ∈ L, while zi = 1+ zm/2 for any i ∈ R. Then, Lemma 3.4 implies that zm/2 ≤ sm = 1− ϵ and

1 + zm/2 ≥ sm, and, consequently, Im(z, s) = [zm/2, 1 + zm/2]. Again, by Lemma 3.1 we have

that zm = zm/2+1+zm/2
2 , i.e., zm = 1. But then, we obtain zi = 1/2 for any i ∈ L and zi = 3/2 for

any i ∈ R, which implies that all k players in L are strictly closer to sm than any player in R;

this contradicts the assumption thatm has neighbors in both L and R.

An example of the construction used in the proof of Theorem 6 is presented in Figure 3.4.

3.5.2 Price of stability

Wewill now prove that the price of stability of k-COF games is strictly higher than 1, i.e., there

exist games without any efficient pure Nash equilibria (even when they exist). In particular,

for any value of k we show that there exist rather simple games with price of stability in Ω(k).

Theorem 3.7. The price of stability of k-COF games, for k ≥ 3, is at least (k + 1)/3.

Proof. Consider a k-COF game with k + 1 players, where k of them have belief 0, while the

remaining one has belief 1. Let z̃ be the opinion vectorwhere each player has opinion 0. Clearly,

SC(z̃, s) = 1, and, hence the optimal social cost is at most 1.
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Figure 3.4: (a) The k-COF game considered in the proof of Theorem 3.6 where the k players of

set L have belief 0, playerm has sm = 1− ϵ and the k players of set R have belief 2. (b) Lemma

3.5 implies that there is no pure Nash equilibrium wherem has neighbors in strictly one of L,

R. In the remaining case, it must hold that x = 1, but then all players in L are strictly closer to

sm than any player in R.

Now, consider any pure Nash equilibrium z. Since, there are exactly k + 1 players, the

neighborhood of each player includes all remaining ones. Let x be the opinion that the player

with belief 1 expresses at z. By Lemma 3.4, we have that x ∈ [0, 1], and by Lemma 3.1, we

have that all remaining players must have opinion x/2. Therefore, again by Lemma 3.1, xmust

satisfy the equation x = (1 + x/2)/2, i.e., x = 2/3. Therefore, there exists a single pure Nash

equilibrium zwhere all players with belief 0 have opinion 1/3 and the single player with belief

1 has opinion 2/3, and we obtain SC(z) = (k + 1)/3 which implies the theorem.

Clearly, the above result states the inefficiency of the best pureNash equilibrium onlywhen

k ≥ 3. For the remaining cases, where k ∈ {1, 2}, we will present slightly more complicated

instances, where the proofs rely on Lemma 3.5. Recall that, for 1-COF games, σ(i) denotes the

single neighbor of player i.

Theorem 3.8. The price of stability of 1-COF games is at least 17/15.

Proof. We use the following 1-COF game with six players and belief vector

s = (0, 5− 3λ, 8, 15, 18 + 3λ, 23),

where λ ∈ (0, 1/4).

Consider the opinion vector

z̃ = (3− λ, 6− 2λ, 7− 6λ, 16 + 6λ, 17 + 2λ, 20 + λ).
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It can be easily seen that it has social cost SC(z̃, s) = 10 + 12λ. So, clearly, SC(z∗, s) ≤ 10 + 12λ

for any optimal opinion vector z∗.

Now, consider the opinion vector

z =

(
5− 3λ

3
,
10− 6λ

3
,
31

3
,
38

3
,
59 + 6λ

3
,
64 + 3λ

3

)
with social cost SC(z, s) = 34/3−4λ. It is not hard to verify (by showing, as Lemma 3.1 requires,

that each opinion lies in the middle of its player’s interval) that z is a pure Nash equilibrium;

we argue that this equilibrium is unique.

We claim that, by Lemma 3.5, there cannot be a pure Nash equilibrium where both σ(j −

1) = j and σ(j + 1) = j for any j ∈ {2, 5}. To see this, assume otherwise and note that the

corresponding intervals satisfy the conditions of the lemma. However, by observing the belief

vector s, it holds that 5sj−1+3sj+1

8 < sj <
3sj−1+5sj+1

8 , for j ∈ {2, 5}, i.e., s does not satisfy the

conditions of Lemma 3.5; this contradicts our original assumption.

The above observation, together with Lemma 3.2, implies that σ(1) = 2, σ(3) = 4, σ(4) = 3

and σ(6) = 5 in any equilibrium. This leaves only σ(2) ∈ {1, 3} and σ(5) ∈ {4, 6} undefined.

Consider an equilibrium z′ with σ(2) = 3; the case σ(5) = 4 is symmetric. Since σ(3) = 4,

Lemma 3.4 implies that z′3 > s3 = 8 and, hence

z′3 − s2 > 3 + 3λ. (3.5)

Since σ(1) = 2, σ(2) = 3 and z′1 =
s1+z′2

2 , Lemma 3.4 implies that z′2 > s2 and we obtain that

z′1 >
5−3λ
2 and, hence,

s2 − z′1 <
5− 3λ

2
. (3.6)

By inequalities (3.5) and (3.6), we get z′3 − s2 > s2 − z′1, which contradicts our assumption that

σ(2) = 3. So, it must hold that σ(2) = 1 (and, respectively, σ(5) = 6) which implies that z is the

unique pure Nash equilibrium.

We conclude that the price of stability is lower-bounded by

SC(z, s)
SC(z∗, s)

=
34/3− 4λ

10 + 12λ
,

and the theorem follows by taking λ to be arbitrarily close to 0.

Theorem 3.9. The price of stability of 2-COF games is at least 8/7.
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Proof. Consider a 2-COF game with four players a, b, c, and d, with belief vector s = (0, 1, 1, 2).

Let z̃ = (1, 1, 1, 3/2) be an opinion vector and observe that SC(z̃, s) = 3/2; note that z̃ is not a

pure Nash equilibrium as player a has an incentive to deviate. Clearly, the optimal social cost

is at most 3/2.

Now consider any pure Nash equilibrium z. By the structural properties of equilibria,

Na(z, s) = Nd(z, s) = {b, c}, while b ∈ Nc(z, s) and c ∈ Nb(z, s). It remains to argue about

the second neighbor of b and c. We distinguish between two cases depending onwhether b and

c have a common second neighbor in {a, d} or not.

First, let a be the common neighbor; the case where d is that neighbor is symmetric. By

Lemma 3.1, we have that zb = zc = (1 + za)/2. Then, we have that Ia(z, s) = [0, zb], Ib(z, s) =

[za, 1], and Id(z, s) = [zb, 2]. Note that by applying Lemma 3.5 on players a, b, and d, we obtain

a contradiction to the fact that z is a pure Nash equilibrium.

Second, without of loss of generality, let Nb(z, s) = {a, c} and Nc(z, s) = {b, d} which, by

Lemma 3.4, imply that zb ∈ [0, 1] and zc ∈ [1, 2]. Then, Lemma 3.1 yields za = zc/2, zb =

(za + zc)/2, zc = (zb + zd)/2, and zd = 1 + zb/2. By solving this system of equations, we obtain

that z = (4/7, 6/7, 8/7, 10/7) and, hence, SC(z) = 12/7.

3.6 Complexity of equilibria

In this sectionwe focus entirely on 1-COF games.We present a polynomial-time algorithm that

determines whether such a game admits pure Nash equilibria, and, in case it does, allows us

to compute the best and worst pure Nash equilibrium with respect to the social cost. We do

so by establishing a correspondence between pure Nash equilibria and source-sink paths in a

suitably defined directed acyclic graph. See Example 3.2 below for an instance execution of the

following procedure.

Assume that we are given neighborhood information according to which each player i has

either player i− 1 or player i+1 as neighbor. From Lemma 3.3, such a neighborhood structure

is necessary in a pure Nash equilibrium. We claim that this information is enough in order to

decide whether there is a consistent opinion vector that is a pure Nash equilibrium or not. All

we have to do is to use Lemma 3.1 and obtain n equations that relate the opinion of each player

to her belief and her neighbor’s opinion. These equations have a unique solution which can

then be verified whether it indeed satisfies the neighborhood conditions or not. So, the main

idea of our algorithm is to cleverly search among all possible neighborhood structures that are
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not excluded by Lemma 3.3 for one that defines a pure Nash equilibrium.

For integers 1 ≤ a ≤ b < c ≤ n, let us define the segment C(a, b, c) to be the set

of players {a, a + 1, ..., c} together with the following neighborhood information for them:

σ(p) = p + 1 for p = a, ..., b and σ(p) = p − 1 for p = b + 1, ..., c. It can be easily seen

that the neighborhood information for all players at a pure Nash equilibrium can always

be decomposed into disjoint segments. Importantly, given the neighborhood information in

segment C(a, b, c) and the beliefs of its players, the opinions they could have in any pure Nash

equilibrium that contains this segment are uniquely defined using Lemma 3.1. In particular,

the opinions of the players within a segment C(a, b, c) are computed as follows. First, we set

zb = sb +
sb+1−sb

3 and zb+1 = sb +
2(sb+1−sb)

3 . Then, we set zp =
sp+zp+1

2 if a ≤ p < b, and

zp =
sp+zp−1

2 if b < p ≤ c.

We remark that the opinion vector implied by a segment is not necessarily consistent to

the given neighborhood structure. So, we call segment C(a, b, c) legit if a ̸= 2, c ̸= n − 1 (so

that it can be part of a decomposition) and the uniquely defined opinions are consistent to the

neighborhood information of the segment, i.e., if |zσ(p) − sp| ≤ |zp′ − sp| for any pair of players

p, p′ (with p ̸= p′) in C(a, b, c). This process appears in Algorithm 1.

A decomposition of neighborhood information for all players will consist of consecutive

segments C(a1, b1, c1), C(a2, b2, c2), ..., C(at, bt, ct) so that a1 = 1, ct = n, aℓ = cℓ−1 + 1 for

ℓ = 2, ..., t. Such a decomposition will yield a pure Nash equilibrium if it consists of legit

segments and, furthermore, the uniquely defined opinions of players in consecutive segments

are consistent to the neighborhood information.

In particular, consider the directed graph G that has two special nodes designated as the

source and the sink, and a node for each legit segment C(a, b, c). Note that G has O(n3) nodes.

The source node is connected to all segment nodes C(1, b, c)while all segment nodes C(a, b, n)

are connected to the sink. An edge from segment node C(a, b, c) to segment node C(a′, b′, c′)

exists if a′ = c + 1 and the uniquely defined opinions of players in the two segments are

consistent to the neighborhood information in both of them. This consistency test has to check

1. whether the leftmost opinion za′ in segment C(a′, b′, c′) is indeed further away from the

belief sc of player c than the opinion zc−1 of the designated neighbor of c in segment

C(a, b, c), i.e., |zc−1 − sc| ≤ |za′ − sc|, and

2. whether the rightmost opinion zc in segment C(a, b, c) is further away from the belief sa′
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of player a′ than the opinion za′+1 of the designated neighbor of a′ in segmentC(a′, b′, c′),

i.e., |za′+1 − sa′ | ≤ |zc − sa′ |.

By the definition of segments and of its edges,G is acyclic. This process appears in Algorithm 2.

Based on the discussion above, there is a bijection between pureNash equilibria and source-

sink paths in G. In addition, we can assign a weight to each node of G that is equal to the total

cost of the players in the corresponding segment, i.e.,

weight(C(a, b, c)) =
∑

a≤p≤c

|zp − sp|.

Then, the total weight of a source-sink path P is equal to the social cost of the corresponding

pure Nash equilibrium, i.e,

SC(z, s) =
∑

C(a,b,c)∈P

weight(C(a, b, c)).

Hence, standard algorithms for computing shortest or longest paths in directed acyclic

graphs can be used not only to detect whether a pure Nash equilibrium exists, but also to

compute the equilibrium of best or worst social cost.

Theorem 3.10. Given a 1-COF game, deciding whether a pure Nash equilibrium exists can be done in

polynomial time. Furthermore, computing a pure Nash equilibrium of highest or lowest social cost can

be done in polynomial time as well.

Example 3.2. Consider a 1-COF game with four players with belief vector s = (0, 9, 12, 21).

According to the discussion above, there are 10 segments of the form C(a, b, c) with 1 ≤ a ≤

b < c ≤ 4, but it can be shown that only 3 of them are legit; these are C(1, 1, 2), C(3, 3, 4)

(see Figure 3.5a), and C(1, 2, 4) (see Figure 3.5b). For example, segment C(1, 1, 4), in which

σ(1) = 2, σ(2) = 1, σ(3) = 2, and σ(4) = 3, corresponds to the opinion vector (3, 6, 9, 15).

This is not consistent to the neighborhood information σ(2) = 1 in the segment, as the belief of

player 2 coincides with the opinion of player 3, while the opinion of player 1 is further away.

The resulting directed acyclic graph G (see Figure 3.5c) implies that there exist two pure Nash

equilibria for this 1-COF game, namely the opinion vectors (3, 6, 15, 18) and (5, 10, 11, 16).

3.7 Upper bounds on the price of anarchy

In this section we prove upper bounds on the price of anarchy of general k-COF games. In our

proof, we relate the social cost of any deterministic opinion vector, including optimal ones, to a
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Algorithm 1: Segment
Input: belief vector s = (s1, ..., sn), parameters a, b, and c such that a ≤ b < c
Output: opinion vector za:c = (za, ..., zc), segment weight, legit indicator
legit← 0
if a ̸= 2 or c ̸= n− 1 then

legit← 1
zb ← sb +

1
3(sb+1 − sb)

zb+1 ← sb +
2
3(sb+1 − sb)

for p := b− 1 downto a do
zp ← 1

2(sp + zp+1)
end
for p := b+ 2 to c do

zp ← 1
2(sp + zp−1)

end
for p := a+ 1 to b do

if |zp−1 − sp| < |zp+1 − sp| then
legit← 0

end
end
for p := b+ 1 to c− 1 do

if |zp+1 − sp| < |zp−1 − sp| then
legit← 0

end
end
weight := 0
for p := a to c do

weight← weight+ |zp − sp|
end

end
return [za:c, weight, legit]
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Algorithm 2: ConstructGraph
Input: belief vector s = (s1, ..., sn)
Output: a node-weighted directed acyclic graph G
V ← ∅
for a← 1 to n− 1 do

for b← a to n− 1 do
for c← b+ 1 to n do

[za:c, weight, legit]← Segment(s, a, b, c)
if legit = 1 then

C.a← a, C.b← b, C.c← c, C.za:c ← za:c, C.weight← weight
V ← V ∪ C

end
end

end
end
V ← V ∪ {source, sink}
E ← ∅
for C ∈ V do

if C.a = 1 then
E ← E ∪ (source, C)

else if C.c = n then
E ← E ∪ (C, sink)

end
end
for all segment pairs (C,D) such that D.a = C.c+ 1 do

if |C.zc−1 − sC.c| ≤ |D.za − sC.c| and |D.za+1 − sD.a| ≤ |C.zc − sD.a| then
E ← E ∪ (C,D)

end
end
return G = (V,E)
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(a)

0 9 12 215 10 11 16

(b)

source sink

C(1, 1, 2) C(3, 3, 4)

C(1, 2, 4)

(c)

Figure 3.5: The 1-COF game considered in Example 3.2. (a) The legit segments C(1, 1, 2) and

C(3, 3, 4) which imply the opinion vector (3, 6, 15, 18). (b) The legit segment C(1, 2, 4) which

implies the opinion vector (5, 10, 11, 16). (c) The directed acyclic graph G which shows that

there exist two pure Nash equilibria in the game.

quantity that depends only on the beliefs of the players and can be thought of as the cost of the

truthful opinion vector (inwhich the opinion of every player is equal to her belief). In particular,

we prove a lower bound on the optimal social cost (in Lemmas 3.11) and an upper bound on the

social cost of any pure Nash equilibrium, both expressed in terms of this quantity. The bound

on the price of anarchy then follows by these relations; see the proof of Theorem 3.12.

Consider an n-player k-COF gamewith belief vector s = (s1, ..., sn). For player i, we denote

by ℓ∗(i) and r∗(i) the integers in [n] such that ℓ∗(i) ≤ i ≤ r∗(i), r∗(i)−ℓ∗(i) = k, and |sr∗(i)−sℓ∗(i)|

is minimized. The proof of the next lemma exploits linear programming and duality.

Lemma 3.11. Consider a k-COF game with belief vector s = (s1, ..., sn) and let z be any deterministic

opinion vector. Then,

SC(z, s) ≥ 1

2(k + 1)

n∑
i=1

|sr∗(i) − sℓ∗(i)|.

Proof. Consider any deterministic opinion vector z and let π be a permutation of the players

so that zπ(j) ≤ zπ(j+1) for each j ∈ [n − 1]. We refer to player π(j) as the player with rank

j. 1 For each player i, we will identify an effective neighborhood Fi(z, s) that consists of k + 1

1Note thatwe have provedmonotonicity of opinions for pureNash equilibria only (Lemma 3.2) and it is not clear
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s1 z4 s2 z1 z3 s3 z2 s4z6 s5 s6 z5

Figure 3.6: An example of the quantities used in the proof of Lemma 3.11. Let k = 2 and i =

4. Then, the neighborhood of player 4 is N4(z, s) = {2, 6}, the smallest contiguous interval

containing the opinions of players in N4(z, s) ∪ {4} is J4(z, s) = [z4, z6], the set of players with

opinions in J4(z, s) isD4(z, s) = {1, 2, 3, 4, 6}, the effective neighborhood is F4(z, s) = {1, 3, 4},

and, hence, ℓ̃(4) = 1, and r̃(4) = 4.

players with consecutive ranks and includes player i. Define ℓ̃(i) and r̃(i) to be the players in

Fi(z, s) with the lowest and highest belief, respectively. In the extreme case where all players

in Fi(z, s) have the same belief, we let ℓ̃(i) and r̃(i) be the players with the lowest and highest

ranks, respectively. The effective neighborhood will be defined in such a way that it satisfies

the properties costi(z, s) ≥ zr̃(i) − zi and costi(z, s) ≥ zi − zℓ̃(i).

Let Ni(z, s) denote the neighborhood of player i, i.e., the set of players (not including i)

with the k closest opinions to the belief si of player i. Let Ji(z, s) be the smallest contiguous

interval containing all opinions of players in Ni(z, s) ∪ {i} and letDi(z, s) be the set of players

with opinions in Ji(z, s). Clearly, |Di(z, s)| ≥ k + 1. We define Fi(z, s) to be a subset ofDi(z, s)

that consists of k + 1 players with consecutive ranks including player i. See Figure 3.6 for an

illustrative example of all quantities defined above.

Let ℓ′(i) and r′(i) be the players in Ni(z, s) with the leftmost and rightmost opinion. In

order to show that the definition of Fi(z, s) satisfies the two desired properties, we distinguish

between three different cases depending on the location of opinion zi among the players in

Ni(z, s) ∪ {i}.

• Case I: Player i has neither the leftmost nor the rightmost opinion in Ni(z, s) ∪ {i}, i.e.,

zℓ′(i) < zi < zr′(i). 2 In this case, Ji(z, s) = [zℓ′(i), zr′(i)]. Then, the definition of Ni(z, s)

implies that costi(z, s) ≥ zr′(i) − zi and costi(z, s) ≥ zi − zℓ′(i). Hence, costi(z, s) ≥ |zj −

zi| for every zj ∈ Ji(z, s) or, equivalently, j ∈ Di(z, s) and, subsequently, for each j ∈

whether such a monotonicity property holds for opinion vectors of minimum social cost. In addition, the statement
of Lemma 3.11 refers to any opinion vector. This clearly includes non-monotonic ones, so we need to rank players
in terms of opinions in the proof.

2Case I cannot appear when k = 1.
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Fi(z, s). This implies the two desired properties costi(z, s) ≥ zr̃(i) − zi and costi(z, s) ≥

zi − zℓ̃(i).

• Case II: Player i has the leftmost opinion in Ni(z, s) ∪ {i}, i.e., zi ≤ zℓ′(i). Then, Ji(z, s) =

[zi, zr′(i)]. Now, the definition of Ni(z, s) implies that costi(z, s) ≥ zr′(i) − zi and, hence,

costi(z, s) ≥ |zj−zi| for every zj ∈ Ji(z, s) or, equivalently, j ∈ Di(z, s) and, subsequently,

for each j ∈ Fi(z, s). Again, this implies the two desired properties.

• Case III: Player i has the rightmost opinion inNi(z, s)∪{i}, i.e., zi ≥ zr′(i). Then, Ji(z, s) =

[zℓ′(i), zi]. Now, the definition of Ni(z, s) implies that costi(z, s) ≥ zi − zℓ′(i) and, hence,

costi(z, s) ≥ |zj−zi| for every zj ∈ Ji(z, s) or, equivalently, j ∈ Di(z, s) and, subsequently,

for every j ∈ Fi(z, s). Again, the two desired properties follow.

By setting the variable ti equal to costi(z, s) for i ∈ [n], the discussion above and the fact that

costi(z, s) ≥ |si − zi| imply that the opinion vector z together with t = (t1, . . . , tn) is a feasible

solution to the following linear program:

minimize
∑
i∈[n]

ti

subject to ti + zi ≥ si,∀i ∈ [n]

ti − zi ≥ −si, ∀i ∈ [n]

ti + zi − zr̃(i) ≥ 0, ∀i ∈ [n] such that r̃(i) ̸= i

ti + zℓ̃(i) − zi ≥ 0,∀i ∈ [n] such that ℓ̃(i) ̸= i

ti, zi ≥ 0, ∀i ∈ [n]

Using the dual variables αi, βi, γi, and δi associated with the four constraints of the above

LP, we obtain its dual LP:

maximize
∑
i∈[n]

siαi −
∑
i∈[n]

siβi

subject to αi + βi + γi · 1r̃(i) ̸= i+ δi · 1ℓ̃(i) ̸= i ≤ 1,∀i ∈ [n]

αi − βi + γi · 1r̃(i) ̸= i− δ(i) · 1ℓ̃(i) ̸= i−
∑

j ̸=i:r̃(j)=i

γj +
∑

j ̸=i:ℓ̃(j)=i

δj ≤ 0,∀i ∈ [n]

αi, βi, γi, δi ≥ 0

The indicator 1X is equal to 1 when the condition X is true, and 0 otherwise. We will show

that the solution defined as

αi =
|{j ∈ [n] : r̃(j) = i}|

2(k + 1)
,

58



βi =
|{j ∈ [n] : ℓ̃(j) = i}|

2(k + 1)
,

γi = δi =
1

2(k + 1)
,

is a feasible dual solution. Indeed, to see why the first dual constraint is satisfied, first observe

that player i belongs to at most 2k + 1 different effective neighborhoods. Hence, player i can

have the lowest or highest belief among the players in the effective neighborhood of at most

2k + 1 players (implying that αi + βi ≤ 1 − 1
2(k+1) ) when r̃(i) = i or ℓ̃(i) = i and of at most

2k players (implying that αi + βi ≤ 1 − 1
k+1 ) when r̃(i) ̸= i and ℓ̃(i) ̸= i. The first constraint

follows.

It remains to show that the second constraint is satisfied as well (with equality). We do so

by distinguishing between three cases:

• When r̃(i) ̸= i and ℓ̃(i) ̸= i, the dual solution guarantees that αi =
∑

j ̸=i:r̃(j)=i γj and

the term αi in the left-hand side of the second constraint cancels out with the sum of γ’s.

Similarly, βi =
∑

j ̸=i:ℓ̃(j)=i δj and the term βi cancels out with the sum of δ’s. Also, the

terms γi and δi are both equal to 1
2(k+1) and cancel out as well.

• When r̃(i) = i (then, clearly, ℓ̃(i) ̸= i), we have that αi = δi · 1ℓ̃(i) ̸= i +
∑

j ̸=i:r̃(j)=i γj

(cancelling out the first, fourth and fifth terms) and βi =
∑

j ̸=i:ℓ̃(j)=i δj (cancelling out the

second and sixth terms), and the second constraint is satisfied with equality as the third

term is zero.

• Finally, when ℓ̃(i) = i (now, it is r̃(i) ̸= i), we have that αi =
∑

j ̸=i:r̃(j)=i γj (cancelling out

the first and fifth terms) and βi = γi ·1r̃(i) ̸= i+
∑

j ̸=i:ℓ̃(j)=i δj (cancelling out the second,

third and sixth terms), and the second constraint is satisfied with equality as the fourth

term is zero.

So, the social cost of the solution z is lower-bounded by the objective value of the primal

LP which, by duality, is lower-bounded by the objective value of the dual LP. Hence

SC(z, s) ≥
∑
i∈[n]

siαi −
∑
i∈[n]

siβi

=
1

2(k + 1)

∑
i∈[n]

|{j ∈ [n] : r̃(j) = i}|si −
∑
i∈[n]

|{j ∈ [n] : ℓ̃(j) = i}|si


=

1

2(k + 1)

∑
i∈[n]

(sr̃(i) − sℓ̃(i))
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=
1

2(k + 1)

∑
i∈[n]

|sr̃(i) − sℓ̃(i)|.

The last equality follows since sr̃(i) ≥ sℓ̃(i), by the definition of r̃(i) and ℓ̃(i).

Note that for each player i, there are at least k + 1 beliefs of different players with values

in [sℓ̃(i), sr̃(i)], including player i. By the definition of ℓ
∗(i) and r∗(i) for each player i, the above

inequality yields

SC(z, s) ≥ 1

2(k + 1)

∑
i∈[n]

|sr∗(i) − sℓ∗(i)|,

as desired.

We are now ready to prove our upper bound on the price of anarchy for k-COF games. In

our proof, we exploit the mononicity of opinions in a pure Nash equilibrium and we associate

the cost of each player in the equilibrium to the same quantity used in the statement of Lemma

3.11.

Theorem 3.12. The price of anarchy of k-COF games over pure Nash equilibria is at most 4(k + 1).

Proof. Consider a k-COF game with belief vector s = (s1, . . . , sn), and let z∗ = (z∗1 , . . . , z
∗
n) be

any opinion vector that minimizes the social cost. By Lemma 3.11, we have

SC(z∗, s) ≥ 1

2(k + 1)

n∑
i=1

|sr∗(i) − sℓ∗(i)|. (3.7)

Now, consider any pure Nash equilibrium z of the game. We will show that

SC(z, s) ≤ 2

n∑
i=1

|sr∗(i) − sℓ∗(i)|, (3.8)

and the theorem will then follow by inequalities (3.7) and (3.8).

The rest of this proof is, therefore, devoted to showing inequality (3.8). To this end, we will

show that, for any player i, we have costi(z, s) ≤ 2(sr∗(i) − sℓ∗(i)). Then, inequality (3.8) will

follow by summing over all players.

Consider an arbitrary player i and, without loss of generality, let us assume that zi ≥ si (the

case zi ≤ si is symmetric). Recall that ℓ(i) and r(i) denote the players in Ni(z, s) ∪ {i}with the

leftmost and rightmost point, respectively, in Ii(z, s) and note that r(i)−ℓ(i) = k. First, observe

that if zr(i) = zi, the assumption zi ≥ si implies that all players in Ni(z, s) ∪ {i} have opinions

at si (since, by Lemma 3.1, zi is in the middle of interval Ii(z, s) at equilibrium). In this case,
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costi(z, s) = 0 and the desired inequality holds trivially. So, in the following, we assume that

r(i) > i and zr(i) > zi, i.e., zr(i) is at the right of zi which in turn is at the right of (or coincides

with) si.

Recall that, for player i, ℓ∗(i) and r∗(i) denote the integers in [n] such that ℓ∗(i) ≤ i ≤ r∗(i),

r∗(i) − ℓ∗(i) = k, and |sr∗(i) − sℓ∗(i)| is minimized. Since r(i) − ℓ(i) = r∗(i) − ℓ∗(i) = k, we

distinguish between two main cases depending on the relative order of r(i) and r∗(i).

Case I. r(i) > r∗(i) and ℓ(i) > ℓ∗(i). Since zr(i) is at the right of si and ℓ∗(i) does not belong

to the neighborhood of player i (while player r(i) does so by definition), zℓ∗(i) is at the left of si

and, furthermore, zr(i) − si ≤ si − zℓ∗(i) or, equivalently,

zr(i) ≤ 2si − zℓ∗(i). (3.9)

This yields

costi(z, s) = zr(i) − zi ≤ 2si − zℓ∗(i) − zi. (3.10)

These inequalities will be useful in several places of the proof for this case below.

If zℓ∗(i) ≥ sℓ∗(i) then, since r∗(i) ≥ i and zi ≥ si, inequality (3.10) becomes costi(z, s) ≤

si − sℓ∗(i) ≤ sr∗(i) − sℓ∗(i) and the desired inequality follows. So, in the following, we assume

that zℓ∗(i) < sℓ∗(i) i.e., zℓ∗(i) is (strictly) at the left of sℓ∗(i). Hence, ℓ∗(i) has her leftmost neighbor

with zℓ(ℓ∗(i)) < zℓ∗(i) and, by Lemma 3.1,

zℓ∗(i) =
zℓ(ℓ∗(i)) +max{sℓ∗(i), zr(ℓ∗(i))}

2
. (3.11)

Since r∗(i) − ℓ∗(i) = k and ℓ(ℓ∗(i)) < ℓ∗(i), we have r∗(i) − ℓ(ℓ∗(i)) > k, and, therefore,

r∗(i) does not belong to the neighborhood of ℓ∗(i). Hence, sℓ∗(i) − zℓ(ℓ∗(i)) ≤ zr∗(i) − sℓ∗(i) or,

equivalently

zℓ(ℓ∗(i)) ≥ 2sℓ∗(i) − zr∗(i) ≥ 2sℓ∗(i) − 2si + zℓ∗(i), (3.12)

where the second inequality follows by our case assumption zr∗(i) ≤ zr(i) and inequality (3.9).

We now further distinguish between two cases, depending on whether player i belongs to

the neighborhood of player ℓ∗(i) or not.
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Case I.1. i ∈ Nℓ∗(i)(z, s); see also Figure 3.7a for an example of this case. Then, we have zi ≤

zr(ℓ∗(i)) and, subsequently,

max{sℓ∗(i), zr(ℓ∗(i))} ≥ zr(ℓ∗(i)) ≥ zi. (3.13)

Using inequalities (3.12) and (3.13), (3.11) yields

zℓ∗(i) ≥ sℓ∗(i) − si +
zℓ∗(i)

2
+

zi
2
,

which implies that zℓ∗(i) ≥ 2sℓ∗(i) − 2si + zi. Now, inequality (3.10) becomes

costi(z, s) ≤ 4si − 2sℓ∗(i) − 2zi ≤ 2si − 2sℓ∗(i) ≤ 2(sr∗(i) − sℓ∗(i))

as desired. The second inequality follows since zi ≥ si and the last one follows since r∗(i) ≥ i.

Case I.2. i ̸∈ Nℓ∗(i)(z, s); see also Figure 3.7b for an example. Then, we have sℓ∗(i) − zℓ(ℓ∗(i)) ≤

zi − sℓ∗(i), which implies that zℓ(ℓ∗(i)) ≥ 2sℓ∗(i) − zi. Using this inequality together with the fact

that max{sℓ∗(i), zr(ℓ∗(i))} ≥ sℓ∗(i), (3.11) yields

zℓ∗(i) ≥
3sℓ∗(i) − zi

2

and inequality (3.10) becomes

costi(z, s) ≤ 2si −
3

2
sℓ∗(i) −

zi
2
≤ 3

2
si −

3

2
sℓ∗(i) ≤ 2(sr∗(i) − sℓ∗(i)),

as desired. The second last inequality follows since zi ≥ si and the last one follows since r∗(i) ≥

i.

Case II. r(i) ≤ r∗(i) and ℓ(i) ≤ ℓ∗(i). Since zi is in the middle of the interval Ii(z, s) and zr(i)

is the rightmost opinion in Ii(z, s), we have

zi =
min{si, zℓ(i)}+ zr(i)

2
≤

zℓ(i) + zr(i)

2
≤

zℓ∗(i) + zr∗(i)

2
.

Since si ≤ zi, the last inequality yields

zℓ∗(i) ≥ 2si − zr∗(i). (3.14)

We also have

costi(z, s) = zr(i) − zi ≤ zr∗(i) − zi. (3.15)

62



z`(`∗(i)) z`∗(i) s`∗(i) s`(i) si zi sr∗(i) sr(i)

I`∗(i)(z, s) · · ·

(a)

z`(`∗(i)) z`∗(i) s`∗(i) s`(i) si zi sr∗(i) sr(i)

I`∗(i)(z, s)

(b)

s`(i) s`∗(i) si zi sr(i) sr∗(i) zr∗(i) zr(r∗(i))

Ir∗(i)(z, s)· · ·

(c)

s`(i) s`∗(i) si zi sr(i) sr∗(i) zr∗(i) zr(r∗(i))

Ir∗(i)(z, s)

(d)

Figure 3.7: Indicative examples of the different cases in the proof of Theorem 3.12. Subfigures

(a) and (b) concern Case I, as r(i) > r∗(i) and ℓ(i) > ℓ∗(i), while subfigures (c) and (d) fall under

Case II, as r(i) ≤ r∗(i) and ℓ(i) ≤ ℓ∗(i).
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If zr∗(i) ≤ sr∗(i) then, since sℓ∗(i) ≤ si ≤ zi, inequality (3.15) yields costi(z, s) ≤ sr∗(i) − si ≤

sr∗(i)−sℓ∗(i), which is even stronger than the desired inequality. So, in the followingwe assume

that zr∗(i) > sr∗(i), i.e., zr∗(i) is at the right of sr∗(i). Since zr∗(i) is in the middle of the interval

Ir∗(i)(z, s), we have that r(r∗(i)) > r∗(i) and, therefore,

zr∗(i) =
min{sr∗(i), zℓ(r∗(i))}+ zr(r∗(i))

2
. (3.16)

Moreover, since r(r∗(i)) − ℓ∗(i) > r∗(i) − ℓ∗(i) = k, player ℓ∗(i) does not belong to the

neighborhood of player r∗(i). Hence, zr(r∗(i)) − sr∗(i) ≤ sr∗(i) − zℓ∗(i) which, together with

inequality (3.14), yields that

zr(r∗(i)) ≤ 2sr∗(i) − zℓ∗(i) ≤ 2sr∗(i) − 2si + zr∗(i). (3.17)

We now further distinguish between two cases, depending on whether player i belongs to

the neighborhood of player r∗(i) or not.

Case II.1. i ∈ Nr∗(i)(z, s); see also Figure 3.7c for an example. Then, using the fact that

min{sr∗(i), zℓ(r∗(i))} ≤ zℓ(r∗(i)) ≤ zi and inequality (3.17), equation (3.16) becomes

zr∗(i) ≤
zi + 2sr∗(i) − 2si + zr∗(i)

2

and, equivalently, zr∗(i) ≤ zi + 2sr∗(i) − 2si. Hence, inequality (3.15) yields

costi(z, s) ≤ 2sr∗(i) − 2si ≤ 2(sr∗(i) − sℓ∗(i)),

as desired. The last inequality follows since ℓ∗(i) ≤ i.

Case II.2. i ̸∈ Nr∗(i)(z, s); see Figure 3.7d for an example. Since i does not belong to the

neighborhood of player r∗(i) but player r(r∗(i)) does, we have that zr(r∗(i))− sr∗(i) ≤ sr∗(i)− zi

or, equivalently, zr(r∗(i)) ≤ 2sr∗(i)−zi. Then, using also the fact that min{sr∗(i), zℓ(r∗(i))} ≤ sr∗(i),

equation (3.16) becomes

zr∗(i) ≤
3sr∗(i) − zi

2

and (3.15) yields

costi(z, s) ≤
3

2
(sr∗(i) − zi) ≤

3

2
(sr∗(i) − sℓ∗(i)),

which is even stronger than the desired inequality. The last inequality follows since zi ≥ si and

ℓ∗(i) ≤ i.
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So, we have shown that in the pure Nash equilibrium z and for any player i, we have that

costi(z, s) ≤ 2(sr∗(i) − sℓ∗(i)). By summing over all players, we obtain inequality (3.8) and the

theorem follows.

3.8 An improved bound on the price of anarchy for 1-COF games

For the case of 1-COF gameswe can prove an even stronger statement following a similar proof

roadmap as in the previous section, but using simpler (and shorter) arguments. We denote by

η(i) the player (other than i) that minimizes the distance |si−sη(i)|; note that η(i) ∈ {i−1, i+1}.

The proof of the next lemma (which can be thought of as a stronger version of Lemma 3.11 for

1-COF games) relies on a particular charging scheme that allows us to lower-bound the cost of

each player in any deterministic opinion vector.

Lemma 3.13. Consider a 1-COF game with belief vector s = (s1, . . . , sn) and let z be any deterministic

opinion vector. Then,

SC(z, s) ≥ 1

3

n∑
i=1

|si − sη(i)|.

Proof. We begin by classifying the players into groups and, subsequently, we show how the

costs of different groups can be combined so that the lemma holds. We call a player i with

zi /∈ [si−1, si+1] a kangaroo player and associate the quantity excessi with her. If zi ∈ [sj , sj+1]

for some j > i, we say that the players in the set Ci = {i + 1, ..., j} are covered by player i and

define excessi = zi − sj . Otherwise, if zi ∈ [sj−1, sj ] for some j < i, we say that the players in

the set Ci = {j, ..., i− 1} are covered by player i and define excessi = sj − zi.

LetK be the set of kangaroo players and C the set of players that are covered by a kangaroo;

these need not be disjoint. We now partition the players not in K ∪ C into the set L of large

players such that, for any i ∈ L, it holds costi(z, s) ≥ 1
3(|si − sη(i)|), and the set S that contains

the remaining players who we call small. See also Figure 3.8 for an example of these sets.

We proceed to prove five useful properties (Claims 3.14–3.18); recall that σ(i) denotes the

single neighbor of player i.

Claim 3.14. Let i ∈ K. Then, costi(z, s)− excessi ≥ 1
3(|si − sη(i)|+

∑
j∈Ci
|sj − sη(j)|).

Proof. We assume that zi > si (the other case is symmetric). Let ℓ be the player with the

rightmost belief that is covered by i. Then, excessi = zi − sℓ. We have

costi(z, s)− excessi = max{|si − zi|, |zi − zσ(i)|} − (zi − sℓ)
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s1 s2 z1 z3 s3 z2 z4 s4 z5 s5

Figure 3.8: An example with kangaroos, covered, large, and small players. In particular, 1 ∈ K

as z1 /∈ [s1, s2], 2 ∈ K ∩ C as she is covered by player 1 and, in addition, z2 /∈ [s1, s3]. Similarly,

3 ∈ C as she is covered by player 2, while 4 and 5 are neither kangaroo nor covered. Since

cost4(z, s) < 1
3(s4 − s3), it is 4 ∈ S, while, since cost5(z, s) ≥ 1

3(s5 − s4), we have 5 ∈ L.

≥ sℓ − si =

ℓ−1∑
j=i

(sj+1 − sj)

≥ 1

3
(|si − sη(i)|+

∑
j∈Ci

|sj − sη(j)|)

as desired.

Claim 3.15. Let i ∈ S such that σ(i) ∈ K. Then, costi(z, s) + excessσ(i) ≥ 1
3 |si − sη(i)|.

Proof. We assume that σ(i) > i (the other case is symmetric). If zσ(i) > sσ(i), then

costi(z, s) = max{|si − zi|, |zi − zσ(i)|}

≥ 1

2
(zσ(i) − si) >

1

2
(sσ(i) − si)

≥ 1

3
|si − sη(i)|,

which contradicts the fact that i is a small player. Hence, zσ(i) ∈ [si, sσ(i)], otherwise player i

would be covered. Let j be the player with the leftmost belief that is covered by player σ(i).

Then, excessσ(i) = sj − zσ(i). We have

costi(z, s) + excessσ(i) = max{|si − zi|, |zi − zσ(i)|}+ sj − zσ(i)

≥ 1

2
(zσ(i) − si) +

1

2
(sj − zσ(i)) =

1

2
(sj − si)

≥ 1

3
|si − sη(i)|

as desired.

Claim 3.16. Let i ∈ S such that σ(i) ∈ L or σ(i) ∈ C \ K. Then, costi(z, s) + costσ(i)(z, s) ≥
1
3(|si − sη(i)|+ |sσ(i) − sη(σ(i))|).
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Proof. We assume that σ(i) > i (the other case is symmetric). If zσ(i) > sσ(i), then

costi(z, s) = max{|si − zi|, |zi − zσ(i)|}

≥ 1

2
(zσ(i) − si) >

1

2
(sσ(i) − si)

≥ 1

3
|si − sη(i)|,

which contradicts the fact that i is a small player. Hence, zσ(i) ∈ [si, sσ(i)], otherwise player i

would be covered. Then,

costi(z, s) + costσ(i)(z, s) = max{|si − zi|, |zi − zσ(i)|}+max{|sσ(i) − zσ(i)|, |zσ(i) − zσ(σ(i))|}

≥ zσ(i) − zi + sσ(i) − zσ(i) = sσ(i) − zi.

Since i is small, we have zi < si +
1
3(sσ(i) − si) and we get

costi(z, s) + costσ(i)(z, s) ≥
2

3
(sσ(i) − si) ≥

1

3
|si − sη(i)|+

1

3
|sσ(i) − sη(σ(i))|

as desired.

Let N(S) denote the set of players j that are neighbors of players in S (i.e., j ∈ N(S)when

σ(i) = j for some player i ∈ S).

Claim 3.17. N(S) does not contain small players.

Proof. Assume otherwise that for some player i ∈ S, σ(i) also belongs to S. Without loss of

generality σ(i) > i. If zσ(i) ≥ sσ(i), then

costi(z, s) ≥
1

2
|zσ(i) − si| ≥

1

2
|sσ(i) − si| ≥

1

3
|si − sη(i)|

contradicting the fact that i ∈ S. So, zσ(i) < sσ(i). Also, zσ(i) ≥ si (since neither i is covered

nor σ(i) is kangaroo). Since σ(i) is small, sσ(i) − zσ(i) < 1
3 |sσ(i) − sη(σ(i))| ≤ 1

3(sσ(i) − si), i.e.,

zσ(i) >
2
3sσ(i) +

1
3si. Hence,

costi(z, s) ≥
1

2
(zσ(i) − si) >

1

3
(sσ(i) − si),

which contradicts i ∈ S.

Claim 3.18. For every two players i, i′ ∈ S, σ(i) ̸= σ(i′).

Proof. Assume otherwise and let σ(i) = σ(i′) = j with i < i′. If zj ̸∈ [si, si′ ], then the cost

of either i or i′ is at least 1
2(si′ − si), contradicting the fact that both players are small. Hence,
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zj ∈ [si, si′ ]. Notice that sj ∈ [si, si′ ] as well, otherwise either i or i′ would be covered by j. Now

the fact that i and i′ are small implies that

costi(z, s) + costi′(z, s) <
1

3
|si − sη(i)|+

1

3
|si′ − sη(i′)| ≤

1

3
(sj − si) +

1

3
(si′ − sj) =

1

3
(si′ − si).

On the other hand,

costi(z, s) + costi′(z, s) ≥
1

2
(zj − si) +

1

2
(si′ − zj) =

1

2
(si′ − si),

a contradiction.

We now consider the social cost of zdue to players of different groups and exploit the claims

above so that we obtain the lemma. In particular, we have

SC(z, s) =
n∑

i=1

costi(z, s)

≥
∑

i∈S:σ(i)∈K

(
costi(z, s) + excessσ(i)

)
+

∑
i∈S:σ(i)∈L∪(C\K)

(
costi(z, s) + costσ(i)(z, s)

)
+
∑
i∈K

(costi(z, s)− excessi) +
∑

i∈L\N(S)

costi(z, s)

≥ 1

3

∑
i∈S:σ(i)∈K

|si − sη(i)|

+
1

3

∑
i∈S:σ(i)∈L∪(C\K)

(
|si − sη(i)|+ |sσ(i) − sη(σ(i))|

)

+
1

3

∑
i∈K

|si − sη(i)|+
∑
j∈Ci

|sj − sη(j)|

+
1

3

∑
i∈L\N(S)

|si − sη(i)|

≥ 1

3

n∑
i=1

|si − sη(i)|,

as desired. The first inequality follows by the classification of the players and due to Claims

3.17 and 3.18. The second one follows by Claims 3.15, 3.16, and 3.14, and by the definition of

large players. The last one follows since the players enumerated in the first two sums at its left

cover the whole set S (by Claim 3.17).

We are ready to present our upper bound on the price of anarchy for 1-COF games.

Theorem 3.19. The price of anarchy of 1-COF games over pure Nash equilibria is at most 3.
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Proof. Let us consider a 1-COF game with n players and belief vector s. Let z∗ be an optimal

opinion vector and recall that η(i) is the player thatminimizes the distance |si−sη(i)|. By Lemma

3.13, we have

SC(z∗, s) ≥ 1

3

n∑
i=1

|si − sη(i)|. (3.18)

Now, consider any pure Nash equilibrium z of the game. We will show that

SC(z, s) ≤
n∑

i=1

|si − sη(i)|. (3.19)

The theorem then follows by (3.18) and (3.19).

In particular, we will show that costi(z, s) ≤ |si− sη(i)| for each player i. Let us assume that

η(i) = i− 1; the case η(i) = i+1 is symmetric. Recall that σ(i) is the neighbor of player i in the

pure Nash equilibrium z. We distinguish between four cases.

• Case I: σ(i) = i − 1. By Lemma 3.4, we have si−1 ≤ zi ≤ si. Then, clearly, costi(z, s) =

|si − zi| ≤ |si − si−1| as desired.

• Case II: σ(i) = i+1 and σ(i−1) = i. By Lemmas 3.2 and 3.4,we have si−1 ≤ zi−1 ≤ si ≤ zi.

Since player i has player i + 1 as neighbor, we have |zi+1 − si| ≤ |si − zi−1|. Hence,

costi(z, s) = |zi − si| ≤ |zi+1 − si| ≤ |si − zi−1| ≤ |si − si−1|.

• Case III: σ(i) = i+ 1, σ(i− 1) = i− 2, and costi(z, s) ≤ costi−1(z, s). By the definition of

σ(·) and Lemma 3.2, we have zi−2 ≤ zi−1 ≤ si−1 ≤ si ≤ zi ≤ zi+1. We have

costi(z, s) ≤ 2costi−1(z, s)− costi(z, s)

= |si−1 − zi−2| − |zi − si|

≤ |zi − si−1| − |zi − si|

= |si − si−1|.

The second inequality follows since player i − 2 (instead of i) is the neighbor of player

i− 1.

• Case IV: σ(i) = i+ 1, σ(i− 1) = i− 2, and costi(z, s) > costi−1(z, s).

costi(z, s) < 2costi(z, s)− costi−1(z, s)

= |zi+1 − si| − |si−1 − zi−1|

≤ |si − zi−1| − |si−1 − zi−1|
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= |si − si−1|.

The second inequality follows since player i+1 (instead of i−1) is the neighbor of player

i.

This completes the proof.

3.9 Lower bounds on the price of anarchy

This section contains our lower bounds on the price of anarchy. 3 We begin by considering the

simpler case of 1-COF games, for which we present a tight lower bound of 3 for pure Nash

equilibria (Theorem 3.20) and a lower bound of 6 for mixed Nash equilibria (Theorem 3.21).

We remark that, for 1-COF games, this implies that mixed Nash equilibria are strictly worse

than pure ones. Then, we study the general case of k-COF games and we show lower bounds

for pure and mixed Nash equilibria (Theorems 3.22 and 3.23, respectively) that grow linearly

with k.

3.9.1 The case of 1-COF games

We now present our lower bounds for the case of 1-COF games; both results rely on the same,

and rather simple, instance.

Theorem 3.20. The price of anarchy of 1-COF games over pure Nash equilibria is at least 3.

Proof. Let λ ∈ (0, 1) and consider a 1-COF game with six players and belief vector s = (−10−

λ,−10 − λ,−2 − λ, 2 + λ, 10 + λ, 10 + λ). This game is depicted in Figure 3.9a. We can show

that the opinion vector (see Figure 3.9b)

z = (−10− λ,−10− λ,−6− λ, 6 + λ, 10 + λ, 10 + λ)

is a pure Nash equilibriumwith social cost SC(z, s) = 8. The first two players suffer zero cost as

they follow each other and their opinions coincide with their beliefs; the same holds also for the

last two players. For the third player, it is σ(3) ∈ {1, 2} since |z1−s3| = |z2−s3| = 8 < |z4−s3| =

8+2λ and z3 is in the middle of the interval [−10−λ,−2−λ]; hence, cost3(z, s) = 4. Similarly,

we have σ(4) ∈ {5, 6}, z4 lies in the middle of the interval [2 + λ, 10 + λ] and cost4(z, s) = 4.

Hence, z is indeed a pure Nash equilibrium.

3We remark that our lower bounds on the price of stability in Section 3.5 are also lower bounds on the price of
anarchy. However, the lower bounds presented in this section are much stronger.

70



−10− λ

[2]

−2− λ

[1]

2 + λ

[1]

10 + λ

[2]

(a)

−10− λ −2− λ 2 + λ 10 + λ−6− λ 6 + λ

(b)

−10− λ −2− λ 2 + λ 10 + λ−2−λ
3

2+λ
3

(c)

Figure 3.9: (a) The 1-COF game considered in the proofs of Theorems 3.20 and 3.21. (b) The pure

Nash equilibrium vector z (see the proof of Theorem 3.20) with social cost 8. (c) The opinion

vector z̃with social cost 8+4λ
3 .

Now, consider the opinion vector (see Figure 3.9c)

z̃ =

(
−10− λ,−10− λ,

−2− λ

3
,
2 + λ

3
, 10 + λ, 10 + λ

)
which yields a social cost of SC(z̃, s) = 8+4λ

3 ; here, again, the first and last two players have zero

cost, but players 3 and 4 now each have cost 4+2λ
3 since they follow each other. The optimal

social cost is upper bounded by SC(z̃) and, hence, the price of anarchy is at least

SC(z, s)
SC(z̃, s)

=
3

1 + λ/2
,

and the theorem follows by setting λ arbitrarily close to 0.

Our next theorem gives a lower bound on the price of anarchy over mixed Nash equilibria

for 1-COF games; we remark that this lower bound is greater than the upper bound of Theorem

3.19 for the price of anarchy over pure Nash equilibria.

Theorem 3.21. The price of anarchy of 1-COF games over mixed Nash equilibria is at least 6.

Proof. Consider again the 1-COF game depicted in Figure 3.9a with six players and beliefs s =

(−10 − λ,−10 − λ,−2 − λ, 2 + λ, 10 + λ, 10 + λ), where λ ∈ (0, 1). To simplify the following
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discussion, we will refer to the first two players as the L players, the third player as player ℓ,

the fourth player as player r, and the last two players as the R players.

Let z be a randomized opinion vector according to which zi = si for every i ∈ L ∪ R, zℓ is

chosen equiprobably from {−6−λ,−6+3λ}, and zr is chosen equiprobably from {6+λ, 6−3λ}.

Observe that σ(ℓ) ∈ L whenever zr = 6 + λ, and σ(ℓ) = r whenever zr = 6− 3λ; each of these

events occurs with probability 1/2. Hence, we obtain

E[costℓ(z, s)] = E[costr(z, s)] =
1

2

(
4

2
+

4 + 4λ

2

)
+

1

2

(
12− 2λ

2
+

12− 6λ

2

)
= 8− λ,

and, thus, E[SC(z, s)] = 16 − 2λ. In the following, we will prove that z is a mixed Nash

equilibrium. First, observe that all players in sets L and R have no incentive to deviate since

they follow each other and have zero cost. Wewill now argue about player ℓ; due to symmetry,

our findings will apply to player r as well.

Consider a deterministic deviating opinion y for player ℓ. Wewill show that E[costℓ(z, s)] ≤

Ez−ℓ
[costℓ(y, z−ℓ), s] for any y, which implies that player ℓ has no incentive to deviate from the

randomized opinion zℓ. Indeed, we have that

Ez−ℓ
[costℓ((y, z−ℓ), s)]

=
1

2
max{| − 2− λ− y|, |y + 10 + λ|}+ 1

2
max{| − 2− λ− y|, |6− 3λ− y|}

≥ 1

2
(y + 10 + λ) +

1

2
(6− 3λ− y)

= 8− λ,

where the inequality holds since max{|a|, |b|} ≥ a for any a and b. Hence, player ℓ has no

incentive to deviate fromher strategy in z, and neither has player r due to symmetry. Therefore,

z is a mixed Nash equilibrium.

Now, consider the opinion vector

z̃ =

(
−10− λ,−10− λ,

−2− λ

3
,
2 + λ

3
, 10 + λ, 10 + λ

)
which, as in Theorem 3.20, yields a social cost of SC(z̃, s) = 8+4λ

3 . Hence, the optimal social cost

is upper bounded by SC(z̃, s), and the price of anarchy over mixed equilibria is at least

E[SC(z, s)]
SC(z̃, s)

= 3
16− 2λ

8 + 4λ
,

and the theorem follows by setting λ arbitrarily close to 0.
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−16− 2λ

[k + 1]

−4− λ

[1]

0

[k − 1]

4 + λ

[1]

16 + 2λ

[k + 1]

(a)

−16− 2λ −4− λ 0 4 + λ 16 + 2λ−8− λ 8 + λ

(b)

−16− 2λ −4− λ 0 4 + λ 16 + 2λ

(c)

−16− 2λ −4− λ 0 4 + λ 16 + 2λ−4−λ
3

4+λ
3

(d)

Figure 3.10: (a) The k-COF game considered in the proofs of Theorems 3.22 and 3.23, for k ≥ 2.

(b) The pure Nash equilibrium opinion vector z (see the proof of Theorem 3.22). (c) The optimal

opinion vector z̃ for k ≥ 3. (d) The optimal opinion vector z̃ for k = 2. Observe that the optimal

opinion vector changes at k = 2 due to the neighborhood size.

3.9.2 The general case of k-COF games with k ≥ 2

We will now present lower bounds on the price of anarchy for k-COF games, with k ≥ 2. We

start with the case of pure Nash equilibria and continue with the more general case of mixed

equilibria. As in the case of 1-COF games, a particular game will be used in order to derive the

lower bounds both for pure and mixed Nash equilibria.

Theorem 3.22. The price of anarchy of k-COF games over pure Nash equilibria is at least k + 1 for

k ≥ 3, and at least 18/5 for k = 2.

Proof. Let λ ∈ (0, 1) and consider a k-COF game with 3k + 3 players, for k ≥ 2, that are

partitioned into the following five sets. The first setL consists of k+1 playerswith si = −16−2λ

for any i ∈ L, the second set consists of a single player ℓ with sℓ = −4− λ, the third setM has
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k − 1 players with si = 0 for any i ∈M , the fourth set is a single player r with sr = 4 + λ, and

the last set R consists of k+1 players with si = 16+2λ for any i ∈ R. This instance is depicted

in Figure 3.10a.

Let z be the following opinion vector: zi = −16−2λ for any i ∈ R, zℓ = −8−λ, zi = 0 for any

i ∈M , zr = 8 + λ, and zi = 16 + 2λ for any i ∈ R; see Figure 3.10b. It is not hard to verify that

this opinion vector is a pure Nash equilibrium with social cost SC(z, s) = (8 + λ)(k + 1). First,

observe that all players in sets L andR have zero cost, and, hence, have no incentive to deviate

to another opinion. Furthermore, no player i ∈M has an incentive to deviate either since zi lies

in the middle of the interval [−8− λ, 8 + λ]which is defined by the opinions of players ℓ and r

who, together with the remaining players ofM , constitute the neighborhoodNi(z, s) of player

i. The cost experienced by such a player i is 8 + λ. Finally, the neighborhood Nℓ(z, s) of player

ℓ consists of all players inM (who have opinions that are closest to sℓ) and some player i ∈ L;

note that player r does not belong to Nℓ(z, s) since zr − sℓ = 12 + 2λ > 12− λ = sℓ − zi for all

i ∈ L. Hence, player ℓ has no incentive to deviate to another opinion since zℓ lies in the middle

of the interval [−16 − 2λ, 0] and she experiences cost equal to 8 + λ. Due to symmetry, player

r does not have incentive to deviate as well. Hence, z is indeed a pure Nash equilibrium with

SC(z, s) = (8 + λ)(k + 1).

We now present an opinion vector z̃ with social cost SC(z̃, s) = 8 + 2λ for k ≥ 3 and

cost(z̃, s) = 5
3(4 + λ) for k = 2. In particular, for k ≥ 3, z̃ is defined as follows: z̃i = −16 − 2λ

for any i ∈ L, z̃ℓ = z̃i = z̃r = 0 for any i ∈ M , and z̃i = 16 + 2λ for any i ∈ R; see Figure 3.10c.

Observe that all players in L, M , and R have zero cost, while players ℓ and r have cost equal

to 4 + λ each. For k = 2, z̃ is defined as follows: z̃i = −16 − 2λ for any i ∈ L, z̃ℓ = −1
3(4 + λ),

z̃i = 0 for any i ∈M , z̃r = 1
3(4 + λ), and z̃i = 16+ 2λ for any i ∈ R; see Figure 3.10d. Again, all

players in L and R have zero cost. However, players ℓ and r now each have cost 2
3(4 + λ) and

the unique player inM has cost 1
3(4 + λ).

Clearly, since SC(z̃, s) is an upper bound on the optimal social cost, we conclude that the

price of anarchy over pure Nash equilibria is at least (8+λ)(k+1)
8+2λ for k ≥ 3 and 9(8+λ)

5(4+λ) for k = 2,

and the theorem follows by setting λ arbitrarily close to 0.

We now consider the case of mixed Nash equilibria; we remark that, in this case, our lower

bounds for k ≥ 2 are smaller than the corresponding upper bounds for pure Nash equilibria.

Theorem 3.23. The price of anarchy of k-COF games over mixed Nash equilibria is at least k + 2 for
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k ≥ 3, and at least 24/5 for k = 2.

Proof. As in the proof of Theorem 3.22, let λ ∈ (0, 1) and consider the k-COF game depicted in

Figure 3.10a with 3k+ 3 players that form 5 sets. Again, the first set L consists of k+ 1 players

where si = −16− 2λ for all i ∈ L, the second set consists of a single player ℓwith sℓ = −4− λ,

the third set M has k − 1 players with si = 0 for all i ∈ M , the fourth set is a single player r

with sr = 4 + λ, and the last set R consists of k + 1 players with si = 16 + 2λ for all i ∈ R.

Consider the following (randomized) opinion vector z: zi = si for every i ∈ L ∪M ∪ R,

while zℓ is chosen uniformly at random among {−8 − λ,−8 + 3λ} and zr is chosen uniformly

at random among {8 − 3λ, 8 + λ}. We will show that the opinion vector z is a mixed Nash

equilibrium with E[SC(z, s)] = 8k + 16− λ.

First, observe that the players in sets L and the R constitute local neighborhoods, that is,

Ni(z, s) = L \ {i} for any player i ∈ L, and Ni(z, s) = R \ {i} for any player i ∈ R. Hence, all

these players have zero cost and no incentive to deviate.

Next, let us focus on a player i ∈ M . Clearly, the neighborhood of player i consists of the

remaining k − 2 players in M as well as players ℓ and r. The expected cost of player i in z is

E[costi(z, s)] = 3
4(8 + λ) + 1

4(8− 3λ) = 8 since at least one of players ℓ and r is at distance 8+ λ

with probability 3/4 and both of them are at distance 8− 3λwith probability 1/4. Hence, these

k − 1 players contribute 8(k − 1) to the expected social cost of z. We now argue that if player

i ∈ M deviates to a deterministic opinion y, her expected cost does not decrease. Clearly, if

y ≥ 3λ, then this trivially holds as the expected cost of i is at least y − zℓ which is at least

y + 8− 3λ; the case where y ≤ −3λ is symmetric. Hence, it suffices to consider the case where

|y| < 3λ. The expected cost of iwhen deviating to y is

Ez−i [costi((y, z−i), s)]

=
1

4
max{8 + λ− y, y + 8 + λ}+ 1

4
max{8 + λ− y, y + 8− 3λ}

+
1

4
max{8− 3λ− y, y + 8 + λ}+ 1

4
max{8− 3λ− y, y + 8− 3λ}

≥ 1

4
(8 + λ− y) +

1

4
(8 + λ− y) +

1

4
(y + 8 + λ) +

1

4
(y + 8− 3λ)

= 8,

where the inequality holds since max{a, b} ≥ a for any a and b.

Now, let us examine player r; the case of player ℓ is symmetric. Observe that the k − 1

players in M always belong to the neighborhood Nr(z, s) of player r and it remains to argue
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about the identity of the last player in Nr(z, s). Whenever zℓ = −8 + 3λ, then ℓ ∈ Nr(z, s),

otherwise, if zℓ = −8 − λ, one of the players in set R belongs to Nr(z, s). The expected cost of

player r is E[costr(z, s)] = 1
4(8 + λ) + 1

4(8 + 5λ) + 1
4(16 − 2λ) + 1

4(16 − 6λ) = 12 − λ/2, and,

hence, players ℓ and r contribute 24− λ to the expected social cost of z. It remains to show that

player r cannot decrease her expected cost by deviating to another opinion y. The expected cost

of player r when deviating to y is

Ez−r [costr((y, z−r), s)] =
1

2
max{|16 + 2λ− y|, |y|}+ 1

2
max{|y + 8− 3λ|, |4 + λ− y|}

≥ 1

2
(16 + 2λ− y) +

1

2
(y + 8− 3λ)

= 12− λ/2,

where the inequality holds since max{|a|, |b|} ≥ a for any a and b. Hence, we conclude that z is

a mixed Nash equilibrium with expected social cost E[SC(z, s)] = 8k + 16− λ.

As in the proof of Theorem 3.22, there exists an opinion vector z̃with social cost SC(z̃, s) =

8 + 2λ for k ≥ 3 and SC(z̃, s) = 5
3(4 + λ) for k = 2. Since SC(z̃, s) is an upper bound on the

optimal social cost, we have that the price of anarchy over mixed equilibria is at least 8k+16−λ
8+2λ

for k ≥ 3 and 3(32−λ)
5(4+λ) for k = 2, and the theorem follows, by setting λ arbitrarily close to 0.

3.10 Conclusion

In this chapter, we focused on the efficiency and complexity of a simple class of compromising

opinion formation games, which we call k-COF games. In such a game, there exists a set of

players with personal beliefs over some issue, but each of them expresses a public opinion

in order to minimize an explicit cost that is defined as the maximum between the distance of

her opinion from her belief and the distance of her opinion from every opinion expressed in

her neighborhood, which dynamically changes depending on the other players that express

opinion chose to her belief.

In particular, we first proved several structural properties about pure Nash equilibria as

well as that pure equilibria may not exist for any value of k. Then, we proved that the price

of stability and anarchy of general k-COF games grows linearly in terms of k. For the special

case of k = 1, we showed a tight bound of 3 on the price of anarchy, and designed an efficient

algorithm for computing the best andworst equilibrium (in terms of the social cost) by reducing

the corresponding problems to the problems of computing minimum and maximum paths in

particular directed acyclic graphs.
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Chapter 4

Truthful mechanisms for ownership
transfer with expert advice

In this chapter we focus on the design and analysis of near-optimal truthful mechanisms for

ownership transfer; see the discussion in Section 1.3 for an introduction to the problem and

motivating examples. The results presented here can be found in [Caragiannis et al., 2018].

4.1 Overview of contribution and techniques

We focus on ownership transfer and study the very simple but fundamental setting of two

competing agentsA andB, and a single expert with cardinal preferences over the three options

of selling to agent A, selling to agent B, or not selling at all (in which case the ownership

transfer does not take place). A mechanism takes as input the bids of the agents and the

expert’s preferences, and decides one of the three options as outcome. In general, mechanisms

are randomized. For a given input, they select the outcome using a probability distribution (or

lottery) over the three options.

We consider mechanisms that can be truthfully implemented as follows. First, the outcome

of the mechanism is complemented with payments that are imposed to the agents. Then, the

lottery and the payments should be such that the expert is incentivized to report her true

preferences in order to maximize her (expected) value for the outcome and the agents are

incentivized to report their true values as bids in order to maximize their utility, i.e., their

expected value for the outcome minus their payment to the mechanism. In the following, we

refer to mechanisms with such implementations as truthful mechanisms.

Interestingly, the theory of mechanism design allows us to abstract away from payments

and view truthful mechanisms simply as lotteries. Well-known characterizations for single-
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parameter mechanism design with money from the literature, as well as new characterizations

that we prove here for lotteries that guarantee truthfulness from the expert’s side, are the main

tools we use in order to constrain the design space of truthful mechanisms in our setting.

Wemake additional informational restrictions that can further divide truthful mechanisms

into the following classes:

• ordinal mechanisms, which ignore the exact bids and the expert’s preference values and

instead take into account only their relative order,

• bid-independent mechanisms, which ignore the bids and base their decision solely on the

expert’s cardinal preferences,

• expert-independent mechanisms, which ignore the expert’s preferences and base their

decision solely on the bids, and

• general truthful mechanisms, which may take both the bids and the expert’s preference

values into account.

We measure the quality of truthful mechanisms in terms of the social welfare, the aggregate

value of the agents and the expert for the outcome. Unfortunately, our setting does not allow

for a truthful implementation of the social welfare-maximizing outcome. Therefore, we resort

to near-optimal truthful mechanisms and use the notion of the approximation ratio to measure

their quality.

For the classes of ordinal, bid-independent, and expert-independentmechanisms, we prove

lower bounds on the approximation ratio of truthful mechanisms in the class and identify the

best possible among them, with approximation ratios of 1.5, 1.377, and 1.343, respectively.

Furthermore, by slightly enhancing expert-independent mechanisms and allowing them to

utilize a single bit of information about the expert’s preferences, we define a template for

the design of new truthful mechanisms. The template defines always-sell mechanisms that

select either agent A or agent B as the outcome. We present two mechanisms that follow

our template, one deterministic and one randomized, with approximation ratios 1.618 and

1.25, respectively. The former is best-possible among all deterministic truthful mechanisms.

The latter is best-possible among all always-sell truthful mechanisms. We also present an

unconditional lower bound of 1.141 on the approximation ratio of any truthful mechanism.

These results are summarized in Table 4.1.
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Class of mechanisms apx. ratio Comment
ordinal 1.5 mechanisms EOM, BOM (Theorem 4.3)

best possible (see Theorem 4.4)
bid-independent 1.377 mechanism BIM (Theorem 4.7)

best possible (Theorem 4.8)
expert-independent 1.343 mechanism EIM (Theorem 4.11)

best possible (Theorem 4.11)
our template 1.25 randomized mechanism R (Theorem 4.14)

best possible, always-sell (Theorem 4.15)
1.618 deterministic mechanism D (Theorem 4.14)

best possible, deterministic (Theorem 4.17)
all mechanisms 1.14 lower bound (Theorem 4.16)

Table 4.1: Overview of our results; see [Caragiannis et al., 2018].

Both our positive and negative results have been possible by narrowing the design space

using the truthfulness characterizations, the particular structure in each class of mechanisms,

as well as the goal of low approximation ratio. In most cases, the design of new mechanisms

turns out to be as simple as drawing a curve in a restricted area of a 2-dimensional plot (for

instance, see Figures 4.2 and 4.3).

4.1.1 Chapter roadmap

We begin with a discussion of related work in Section 4.2. Then, we continue with preliminary

definitions, notation and examples in Section 4.3. Then, Sections 4.4, 4.5, and 4.6 are devoted

to ordinal, bid-independent and expert-independent mechanisms, respectively. Our template

and the corresponding best possible deterministic and randomized mechanisms are presented

in Section 4.7, while our unconditional lower bounds are presented in Section 4.8. Finally, we

conclude in Section 4.9

4.2 Related work

Our setting can be viewed as an instance of approximate mechanism design, with [Nisan and

Ronen, 2001] and without money [Procaccia and Tennenholtz, 2013], which was proposed for

problems where the goal is to optimize an objective under strict truthfulness requirements.

Myerson [1981] proved necessary and sufficient conditions for (deterministic or randomized)

truthful mechanisms with money. This characterization allowed us to abstract away from the

payment functions (which are uniquely determined given the winning probabilities) on the
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agents’ side, and provided us with tools to argue about the structure of truthful mechanisms

without money on the expert’s side as well.

For settings with money, the VCG mechanism [Clarke, 1971, Groves, 1973, Vickrey, 1961]

is deterministic, truthful, and maximizes the social welfare. However, as we pointed out in

Section 1.3, in our hybrid mechanism design setting we need to take the values of the expert

into account as well, and therefore VCG is no longer truthful nor optimal (see Example 4.1). On

the expert’s side, truthful mechanisms can be thought of as truthful voting rules; any positive

results for deterministic such rules are impaired by impossibility theorems [Gibbard, 1973,

Satterthwaite, 1975] which limit this class to only dictatorial mechanisms.

In contrast, the class of randomized truthful voting rules is much richer and includes many

reasonable truthful rules that are not dictatorial. In fact, Gibbard [1977] characterized the class

of all such ordinal rules; a general characterization for all cardinal rules is still elusive. To this

end, a notable amount of work in the classical economics literature as well as in computer

science has been devoted towards designing such rules and proving structural properties for

restricted classes. Gibbard [1978] provided a characterization which only holds for discrete

strategy spaces, and later Hylland [1980]1 proved that the class of truthful rules that are Pareto-

efficient reduces to random dictatorships.

Freixas [1984] used the differential approach to mechanism design proposed by Laffont

and Maskin [1980] to design a class of truthful mechanisms which actually characterize the

class of twice differentiable mechanisms over subintervals of the valuation space; the best

possible truthful bid-independent mechanism that we propose in this chapter can be seen as a

mechanism in this class. Barbera et al. [1998] showed that there are many interesting truthful

mechanisms that do not fall into the classes considered by Freixas [1984]. In the computer

science literature, Feige and Tennenholtz [2010] designed a class of one-voter cardinal truthful

mechanisms, where the election probabilities are given by certain polynomials.

Social welfare maximization without payments has been studied in a plethora of papers, in

general social choice settings [Bhaskar et al., 2018, Filos-Ratsikas andMiltersen, 2014] as well as

in restricted domains such as matching and allocation problems [Cheng, 2016, Filos-Ratsikas

et al., 2014, Guo and Conitzer, 2010]. Similarly to our work, Filos-Ratsikas and Miltersen

[2014] use one-voter cardinal truthful mechanisms to achieve improved welfare guarantees.

The presence of the agents significantly differentiates our setting from theirs (as well as other

1Quite remarkably, this paper is unpublished – the result was revisited by Dutta et al. [2007].
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related paper). Another relevant notion is that of the distortion of (non-truthful) mechanisms

which operate under limited (ordinal) information [Anshelevich et al., 2015, Boutilier et al.,

2015, Caragiannis et al., 2017b, Caragiannis and Procaccia, 2011, Caragiannis et al., 2016].While

the lack of information has also been a restrictive factor for some of our results (in conjunction

with truthfulness), we mainly focused on cardinal mechanisms for which truthfulness is the

limiting constraint.

4.3 Definitions and notation

Our setting consists of two agents A and B who compete for an item (to be thought of as an

abstraction of a merger or acquisition) and an expertE. The agents have valuations wA and wB

denoting the amount of money that they would be willing to spend for the item, and the expert

has a valuation function v : O → R over the following three options: agent A is selected to get

the item, or agent B is selected, or no agent is selected to get the item. We use ⊘ to denote this

last option; hence,O = {A,B,⊘}. We usew = (wA, wB) to denote an agent profile and letW be

the set of all such profiles. Similarly, we use v = (v(A), v(B), v(⊘)) to denote an expert profile

and let V be the set of all such profiles. The domain of our setting is D = V ×W . From now on,

we use the term profile to refer to elements of D.

A mechanismM takes as input from the expert and the agents a profile (v,w) and decides,

according to a probability distribution (or lottery) PM , the pair (o,p) consisting of an option

o ∈ O and a vector p = (pA, pB) indicating the payments that are imposed to the agents. The

execution of the mechanism yields a utility to the expert and the agents. Given an outcome

(o,p) of the mechanism, the utility of the expert is

uE(o,p) = v(o)

and the utility of agent i ∈ {A,B} is

ui(o,p) =

{
wi − pi, if i = o

−pi, otherwise.

The expert and the agents submit an expert’s report and bids to the mechanism representing

their corresponding profiles, but may have incentives to misreport their true values in order

to maximize their utility. We are interested in mechanisms that do not allow such strategic

manipulations. We say that a mechanism M is truthful for agent i ∈ {A,B} if for any agent

value wi and any profile (v′,w′),

E[ui(M(v′, (wi, w
′
−i))] ≥ E[ui(M(v′,w′))],
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where the expectation is taken with respect to the lottery PM . This means that bidding her true

value wi is a utility-maximizing strategy for the agent, no matter what the other agent and the

expert’s report are. Mechanism M is truthful for the expert if for any expert profile v and any

profile (v′,w′),

E[uE(M(v,w′))] ≥ E[uE(M(v′,w′))].

Again, this means that reporting her true valuation profile is a utility-maximizing strategy for

the expert, no matter what the agents bid. A mechanism M is truthful if it is truthful for the

agents and truthful for the expert.

Our goal is to design truthful mechanisms that achieve high social welfare, which is the

total value of the agents and the expert for the outcome. For a meaningful definition of the

social welfare that weighs equally the expert’s and the agents’ valuations, we adopt a canonical

representation of profiles. The expert has von Neumann-Morgenstern valuations, i.e., she has

valuations of 0 and 1 for two of the options and a value in [0, 1] for the third one. The agent

values are normalized in the definition of the social welfare by dividing with the maximum of

them. Then, the social welfare of an option o ∈ O is

SW(o,v,w) =

{
v(o) + wo

max{wA,wB} , if o ∈ {A,B}
v(⊘), otherwise.

Wemeasure the quality of a truthfulmechanismM by its approximation ratio, which (by abusing

notation a bit and interpretingM(v,w) as the option decided by the mechanism) is defined as

ρ(M) = sup
(v,w)∈D

maxo∈O SW(o,v,w)

E[SW(M(v,w),v,w)]
.

Low values of ρ(M), as close as possible to 1, are most desirable.

Before we continue with the discussion of alternative representation of profiles, we present

an example demonstrating the reason why the mechanism that simply selects the option that

maximizes the social welfare based on the reported profile provided by the expert and the

agents is not truthful.

Example 4.1. Let α and β be two parameters in (0, 1) such that α > β. Consider a profile in

which the expert has values v = (v(A), v(B), v(⊘)) = (1, α, 0) and the agents have values

w = (wA, wB) = (β, 1).

If the expert and the agents were truthful, then since α > β, the mechanism that chooses

the option that maximizes the social welfare would select agent B. From the agent’ side, it is

well-understood how such a mechanism can be implemented; a simple second-price auction

82



would incentivize both agents to be truthful and, of course, would choose the one with the

highest value. However, at the same time, we want the expert to be truthful as well, which is

not possible in this particular example. The expert has strong incentive to misreport her value

for agent B and decrease it from α to zero. This way, the output of the mechanism is agent A

for whom the expert has value 1, as opposed to agent B for whom her value is α < 1.

4.3.1 An alternative view of profiles

In order to simplify the exposition in the following sections, we devote some space here to

introduce two alternative ways of representing profiles, which in turn will showcase more

intuitive ways of realizing truthfulness and will help us in the design of efficient mechanisms.

Without restricting the space of mechanisms that can achieve good approximation ratios

according to our definition of the social welfare, we focus on mechanisms that base their

decisions on the normalized bid values wA
max{wA,wB} and

wB
max{wA,wB} . It will be convenient to use

the following two alternative ways(
1 x 0
h ℓ z

)
and

[
h ℓ n
1 y 0

]
to represent profiles. These representations are the expert’s and agents’ view of the profile,

respectively. Each column corresponds to an option. According to the expert’s view at the left,

the columns are ordered in terms of the expert’s values, which appear in the first row. The

quantities h, ℓ, and z hold the normalized agent bids for the corresponding option and 0 for

option ⊘. Essentially, h is the value that the expert’s favourite option has, which can be equal

to 1 if it corresponds to the value of the agent with the highest value (high-bidder), equal to some

value y ∈ [0, 1] if it corresponds to the value of the agent with the lowest value (low-bidder), or

0 if it corresponds to the no-sale option⊘. Similarly, ℓ and z are the values that expert’s second

and third favourite options have, respectively. According to the agents’ view at the right, the

columns are ordered in terms of the bids, which appear in the second row. The quantities h, ℓ,

and n now hold the expert valuations for the corresponding options. Now, h is the value that

the expert has for the high-bidder, ℓ is the value of the expert for the low-bidder, and z is the

value that the expert has for the no-sale option. All of them can take values in the interval [0, 1].

These representations yield a crisper way to argue about truthfulness for the expert and

the agents in our main results. Specifically, in Section 4.5, we will study bid-independent

mechanisms, and therefore it makes sense to use the expert’s view of profiles, whereas in

Section 4.6, it will be easier to argue about our expert-independent mechanisms based on the
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agents’ view instead. The agents’ view will also be used in Section 4.7, where, the mechanisms

we present use the expert’s opinion only to appropriately partition the input profiles into

categories, and it is therefore easier to argue about their properties using the agent’s view.

Similarly, we use two different representations of the lotteryPM , depending onwhetherwe

represent profiles according to the expert’s or the agents’ view. From the expert’s viewpoint,

PM is represented by three functions gM , fM , and ηM , which correspond to the probability of

selecting the first, second, and third favourite option of the expert, respectively. Similarly, from

the agents’ viewpoint, PM is represented by three functions dM , cM , and eM , which correspond

to the probability of selecting the agent with the highest bid (or high-bidder), the other agent (or

low-bidder), or option ⊘.

Example 4.2. Consider a profile with expert valuations 1 for option ⊘, 0.3 for option A, and 0

for option B and normalized bids of 1 and 0.9 from agents A and B, respectively. Consider a

lottery which, for the particular profile, uses probabilities 0.4, 0.1, and 0.5 for optionsA,B, and

⊘, respectively. The expert’s and agents’ views of the profile are(
1 0.3 0
0 1 0.9

)
and

[
0.3 0 1
1 0.9 0

]
,

respectively. The functions gM , fM , and ηM are defined over the 4-tuple of arguments

(x, h, ℓ, z) = (0.3, 0, 1, 0.9) following the expert’s view of the profile and take values 0.5, 0.4,

and 0.1, respectively. Similarly, the functions dM , cM , and eM are defined over the 4-tuple of

arguments (y, h, ℓ, n) = (0.9, 0.3, 0, 1) following the agents’ view of the profile and take values

0.4, 0.1, and 0.5, respectively.

In order to handle situations of equal values (e.g., equal bids), we adopt the convention to

resolve ties using the fixed priorityA ≻ B ≻ ⊘ in order to identify the high- and low-bidder as

well as the highest and/or lowest expert valuation. For example, if the expert has valuations

of 1 for options⊘ and B, we interpret this as option B being her most favourite one. Similarly,

agent A is always the high-bidder and agent B is the low-bidder when their bids are equal.

This is used in the definition of our mechanisms only; lower bound arguments do not depend

on such assumptions in order to be as general as possible.

4.3.2 Reasoning about truthfulness

Let us now explain the truthfulness requirements having these profile representations inmind.

There are two different kinds of possible misreports by the expert. In particular, the expert can

attempt to make
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• a level change in the reported valuation (ECh) by changing her second highest valuation

without affecting the order of her valuations for the options, or

• a reported valuation swap (ESw), i.e., change the order of her valuations for the options as

well as the particular values.

Example 4.3. The profile (
1 0.6 0
0.9 0 1

)
is the result of a reported valuation swap by the expert who changes her valuations from

(1, 0.3, 0) to (0.6, 0, 1) for the options (⊘, A,B).

There are also two different kinds of possible misreports by each agent, who can attempt to

make

• a level change in the reported bid (BCh) by changing her bid without affecting the order of

bids, or

• a bid swap (BSw) by changing both the bid order and the corresponding values.

Example 4.4. The profile [
0 0.3 1
1 0.25 0

]
is the result of a bid swap deviation by the low-bidder, who increases her bid in the profile

above to a new bid that is four times the bid of the other agent.

A truthful mechanism never incentivizes (i.e., it is incentive compatiblewith respect to) such

misreportings. We use the terms ECh-IC, ESw-IC, BCh-IC, and BSw-IC to refer to incentive

compatibility with respect to the misreporting attempts mentioned above. Therefore, a truthful

mechanism satisfies all these IC conditions. Before we proceed, we provide a few examples of

truthful mechanisms.

Example 4.5 (A bid-independent ordinal mechanism). Consider the following mechanism

that ignores the bids reported by the agents. With probability 2/3, output the expert’s most

preferred option and with probability 1/3, output the expert’s second most preferred option.

Adopting the expert’s view of profiles and the corresponding representation of the lottery PM ,

the mechanism can be written as

gM (x, h, ℓ, z) =
2

3
, fM (x, h, ℓ, z) =

1

3
and ηM (x, h, ℓ, z) = 0.
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The mechanism can be seen to be truthful by the fact that (a) ignores the bids of the agents

and (b) it always assigns higher probability to the most-preferred outcome for the expert and 0

probability to the least-preferred outcome. Note that using the terminology above, any ordinal

mechanism is ECh by construction, since changing the level in the reported valuation does not

change the outcome.

Example 4.6 (A bid-independent non-ordinal mechanism). Consider the followingmechanism

that ignores the bids reported by the agents. Again, we adopt the expert’s view of profiles and

the corresponding representation of the lottery PM ; recall that x is the value of the expert for

her second most-preferred outcome. Let PM be given by

gM (x, h, ℓ, z) =
4− x2

6
, fM (x, h, ℓ, z) =

1 + 2x

6
and ηM (x, h, ℓ, z) =

1− 2x+ x2

6
.

Note that the mechanism uses the cardinal information of the expert’s report and therefore it

is not ordinal. This mechanism has been referred to in the literature as the quadratic lottery and

has been proven to be truthful [Feige and Tennenholtz, 2010, Freixas, 1984].

Example 4.7 (An expert-independent mechanism). Consider the following mechanism that

ignores the expert’s values for the different outcomes. Among the two agents, output the agent

with the highest bid (breaking ties arbitrarily) and charge this agent a payment that is equal to

the bid of the other agent. Charge the other agent a payment of 0. In terms of the agents’ view,

the outcome of the mechanism can be written as

dM (y, h, ℓ, n) = 1, cM (y, h, ℓ, n) = 0 and eM (y, h, ℓ, n) = 0.

This mechanism is the well-known second-price auction [Vickrey, 1961], which is known (and

easily seen) to be truthful.

It is not hard to observe that none of the mechanisms presented in Examples 4.5, 4.6 and

4.7 can achieve very strong approximation ratios. As we will see in Section 4.4, the mechanism

of Example 4.5 is actually the best possible among the restricted class of ordinal mechanisms;

later on, the use of cardinal information will allow us to decisively outperform it. We also note

that while the second-price auction in Example 4.7 is welfare-optimal for the agents, which is

a well-known fact, it can only provide a 2-approximation when it comes to our objective of the

combined welfare of the agents and the expert.

We continue with important conditions that are necessary and sufficient for BCh-IC and

ECh-IC. The next lemma is essentially the well-known characterization of [Myerson, 1981] for

single-parameter domains.
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Lemma 4.1 (Myerson, 1981). A mechanismM is BCh-IC if and only if the functions dM and cM are

non-increasing and non-decreasing in terms of their first argument, respectively.

The correct interpretation of the lemma is that, as long as the output of amechanism satisfies

the monotonicity condition above, one can always find payments for the agents that will make

themechanism BCh-IC. In fact, when themechanisms are required to charge a payment of zero

to an agent with a zero bid, then these payments are uniquely defined, and are given by the

following formula

pi(wi, w−i) = wi · qi(wi, w−i)−
∫ wi

0
qi(t, w−i)dt,

where qi is the probability that agent i ∈ {A,B} gets selected as the outcome, pi is the payment

function, wi is the bid of agent i and w−i is the bid of the other agent. Therefore, we can avoid

referring to the payment functionwhen designing ourmechanisms, aswe can choose the above

payment function, provided that the outcome probabilities satisfy the monotonicity conditions

of Lemma 4.1. On the other hand, our lower bounds apply to all mechanisms, regardless of the

payment function, as they only use the monotonicity condition.

Next, we provide a similar proof to that of Myerson [1981] for characterizing ECh-IC in our

setting.

Lemma 4.2. A mechanism M is ECh-IC if and only if the function fM is non-decreasing in terms of

its first argument and the function gM satisfies

gM (x, h, ℓ, z) = gM (0, h, ℓ, z)− xfM (x, h, ℓ, z) +

∫ x

0
fM (t, h, ℓ, z)dt, (4.1)

for every 4-tuple (x, h, ℓ, z) representing a profile as seen by the expert.

As a corollary, functions gM and hM are non-increasing in terms of the first argument.

Proof. To shorten notation, we use b = (h, ℓ, z) as an abbreviation of the information in the

second row of a profile in expert’s view and (x,b) as an abbreviation of (x, h, ℓ, z). Also, we

drop M from notation (hence, f(x,b) is used instead of fM (x, h, ℓ, z)) since it is clear from

context. Due to ECh-IC, the expert has no incentive to attempt a level change of her utility for

her second favourite option from x to x′. This means that

g(x,b) + xf(x,b) ≥ g(x′,b) + xf(x′,b). (4.2)
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Similarly, she has no incentive to attempt a level change of her utility for her second favourite

option from x′ to x. This means that

g(x′,b) + x′f(x′,b) ≥ g(x,b) + x′f(x,b). (4.3)

By summing (4.2) and (4.3), we obtain that

(x− x′)(f(x,b)− f(x′,b)) ≥ 0,

which implies that f is non-decreasing in terms of its first argument.

To prove equation (4.1), we observe that inequality (4.2) yields

g(x,b) + xf(x,b) ≥ g(x′,b) + x′f(x′,b) + (x− x′)f(x′,b). (4.4)

This means that function g(x,b) + xf(x,b) is convex with respect to its first argument and has

f as its subgradient [Rockafellar, 2015]. Hence, from the standard results of convex analysis we

get

g(x,b) + xf(x,b) = g(0,b) +
∫ x

0
f(t,b)dt,

which is equivalent to (4.1).

Before we conclude the section, we remark here that while Lemma 4.2 will be fundamental

for our proofs, it does not provide a characterization of all truthful one-votermechanisms in the

unrestricted social choice setting (suchmechanisms are referred to as unilateral in the literature).

The reason is that (a) it applies only to changes in the intensity of the preferences and not

swaps in the ordering of alternatives and (b) it only provides conditions for three alternatives,

as opposed to many alternatives in the general setting.

4.4 Ordinal mechanisms

Wewill consider several classes of truthful mechanisms depending on the level of information

that they use. Let us warm up with some easy results on ordinal mechanisms, which do not

use the exact values of the expert’s report and the bids but only their relative order. It turns out

that the best possible approximation ratio of such mechanisms is 3/2 and is achieved by two

symmetricmechanisms, one depending only on the ordinal information provided by the expert

(expert-ordinal), while the other depends only on the relation between the bids (bid-ordinal).

The expert-ordinal mechanism EOM selects the expert’s favourite and second best option

with probabilities 2/3 and 1/3, respectively. Symmetrically, the bid-ordinal mechanism BOM

selects the high- and low-bidder with probabilities 2/3 and 1/3, respectively.
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Theorem 4.3. Mechanisms EOM and BOM are truthful mechanisms that have approximation ratio at

most 3/2.

Proof. Mechanism EOM is clearly truthful for the agents since it ignores their bids. It is also

clearly truthful for the expert since the probabilities of selecting the options follow the order

of the expert’s valuations for them. BOM is clearly truthful for the expert (since her input is

ignored); truthfulness for the agents follows by observing that the probability of selecting an

agent is non-decreasing in terms of her bid.

We prove the approximation ratio for mechanism BOM only; the proof for the case of EOM

is completely symmetric. Consider the profile
[
h ℓ n
1 y 0

]
in agents’ view. We distinguish

between two cases. If 1+ h ≥ y+ ℓ, the optimal welfare is 1+ h and the approximation ratio is

1 + h
2
3(1 + h) + 1

3(y + ℓ)
≤ 3

2

since y + ℓ ≥ 0. If 1 + h ≤ y + ℓ, the optimal welfare is y + ℓ and the approximation ratio is

y + ℓ
2
3(1 + h) + 1

3(y + ℓ)
=

1
2
3
1+h
y+ℓ +

1
3

≤ 3

2

since 1+h
y+ℓ ≥

1
2 .

We conclude this section by showing that both EOM and BOM are best possible among all

ordinal mechanisms.

Theorem 4.4. The approximation ratio of any ordinal mechanism is at least 3/2.

Proof. Let ϵ ∈ (0, 1/2) and consider the following two profiles:(
1 ϵ 0
0 ϵ 1

)
and

(
1 1− ϵ 0
0 1− ϵ 1

)
.

Since the order of the expert utilities and the bids is the same in both profiles, an ordinal

mechanism behaves identically in all these profiles for every ϵ ∈ (0, 1/2). Assume that such a

mechanism selects the middle option with probability p. Then, the approximation ratio of this

mechanism is at least the maximum between its approximation ratio for these two profiles.

Considering all profiles for ϵ ∈ (0, 1/2), we get an approximation ratio of at least

sup
ϵ∈(0,1/2)

{
1

1− p+ 2ϵp
,

2(1− ϵ)

1− p+ 2(1− ϵ)p

}
= max

{
1

1− p
,

2

1 + p

}
.

This is minimized to 3/2 for p = 1/3.
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4.5 Bid-independent mechanisms

In this section, we consider cardinal mechanisms but restrict our attention to ones that ignore

the bids and base their decisions only on the expert’s report. It is convenient to use the expert’s

view of profiles
(

1 x 0
h ℓ z

)
. Then, a bid-independent mechanism can be thought of as using

univariate functions gM , fM , and ηM which indicate the probability of selecting the expert’s

first, second, and third favourite option when she has value x ∈ [0, 1] for the second favourite

option. We drop M from notation since the mechanism will be clear from context. The next

lemma provides sufficient and necessary conditions for bid-independent mechanisms with

good approximation ratio.

Lemma 4.5. Let M be a bid-independent mechanism that uses functions g, f and η. Then M has

approximation ratio at most ρ if and only if the inequalities

2g(x) + xf(x) ≥ 2/ρ (4.5)

g(x) + (1 + x)f(x) ≥ (1 + x)/ρ (4.6)

hold for every x ∈ [0, 1].

Proof. Consider the application ofM on the profile
(

1 x 0
h ℓ z

)
. If 1 + h ≥ x+ ℓ the optimal

welfare is 1 + h and the approximation ratio is

1 + h

(1 + h)g(x) + (x+ ℓ)f(x) + zη(x)
≤ 1 + h

(1 + h)g(x) + (x+ ℓ)f(x)

≤ 2

2g(x) + xf(x)
.

The first inequality follows since z, η(x) ≥ 0 and the second one follows since the expression

at the RHS is non-increasing in ℓ and non-decreasing in h. Then, the first inequality of the

statement follows as a sufficient condition so thatM has approximation ratio at most ρ. To see

why it is also necessary, observe that the inequalities in the derivation above are tight for h = 1,

ℓ = 0, and z = 0.

If 1 + h ≤ x+ ℓ the optimal welfare is x+ ℓ and the approximation ratio is

x+ ℓ

(1 + h)g(x) + (x+ ℓ)f(x) + zη(x)
≤ x+ ℓ

(1 + h)g(x) + (x+ ℓ)f(x)

≤ 1 + x

g(x) + (1 + x)f(x)
.

The first inequality follows since z, η(x) ≥ 0 and the second one follows since the expression

at the RHS is non-increasing in ℓ and non-decreasing in h. Then, the second inequality of the
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statement follows as a sufficient condition so thatM has approximation ratio at most ρ. To see

why it is also necessary, observe that the two inequalities in the derivation above are tight for

h = 0, ℓ = 1, and z = 0.

Truthfulness of bid-independent mechanisms in terms of the agents follows trivially (since

the bids are ignored). In order to guarantee truthfulness from the expert’s side, we will use

the characterization of ECh-IC from Lemma 4.2 together with additional conditions that will

guarantee ESw-IC. These are provided by the next lemma.

Lemma 4.6. An ECh-IC bid-independent mechanism is truthful if and only if the functions g, f , and η

it uses satisfy g(x) ≥ f(x′) and f(x) ≥ η(x′) for every pair x, x′ ∈ (0, 1).

Proof. We first show that the first condition is necessary. Assume that the first condition is

violated, i.e., f(x1) > g(x2) for two points x1, x2 ∈ (0, 1). If x1 > x2, by the monotonicity of

g we have g(x1) ≤ g(x2) and f(x1) > g(x1). Otherwise, by the monotonicity of f , we have

f(x2) ≥ f(x1) and f(x2) > g(x2). In any case, there must exist x∗ ∈ (0, 1) such that f(x∗) >

g(x∗). Now consider the swap from expert valuation profile (1, x∗, 0) to the profile (x∗, 1, 0).

The utility of the expert in the initial true profile is g(x∗) + x∗f(x∗)while her utility at the new

profile becomes f(x∗) + x∗g(x∗), which is strictly higher.

Now, we show that the second condition is necessary. Again, assuming that the second

condition is violated, we obtain that there is a point x∗ ∈ (0, 1) such that η(x∗) > f(x∗). Now,

the swap from expert’s valuation profile (1, x∗, 0) to the profile (1, 0, x∗) increases the utility of

the expert from g(x∗) + x∗f(x∗) to g(x∗) + x∗η(x∗), which is again strictly higher.

To show that the condition is sufficient for ECh-IC, we need to distinguish between five

possible attempts for valuation swap by the expert.

Case 1. Consider the swap from the valuation profile (1, x, 0) to the profile (1, 0, x′). The utility

of the expert at the new profile is g(x′) + xη(x′) ≤ g(0) +
∫ x
0 f(t)dt = g(x) + xf(x), where the

inequality holds due to the fact that η(x′) ≤ f(t), for every t ∈ [0, x]. Observe that the RHS of

the derivation is the expert’s utility at the initial true profile.

Case 2. Consider the swap from the valuation profile (1, x, 0) to the profile (x′, 1, 0). The utility

of the expert at the newprofile is f(x′)+xg(x′) ≤ g(x′)+xf(x′) = g(x′)+x′f(x′)+(x−x′)f(x′) ≤

g(x) + xf(x), which is her utility at the initial true profile. The first inequality follows by the

condition g(x′) ≥ f(x) of the lemma and the second one is due to the convexity of function
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g(x) + xf(x). See also the proof of Lemma 4.2.

Case 3. Consider the swap from the valuation profile (1, x, 0) to the profile (x′, 0, 1). The utility

of the expert at the new profile is f(x′) + xη(x′), which is at most g(x) + xf(x) due to the

conditions of the lemma.

Case 4. Consider the swap from the valuation profile (1, x, 0) to the profile (0, x′, 1). The utility

of the expert at the new profile is η(x′) + xf(x′) ≤ f(x) + xg(x) ≤ g(x) + xf(x), which is her

utility at the initial true profile.

Case 5. Consider the swap from the valuation profile (1, x, 0) to the profile (0, 1, x′). The utility

of the expert at the new profile is η(x′) + xg(x′) ≤ f(x′) + xg(x′) and the proof proceeds as in

Case 2 above.

We are now ready to propose our mechanism BIM. Let τ = −W
(
− 1

2e

)
, where W is the

Lambert function, i.e., τ is the solution of the equation 2τ = eτ−1. Mechanism BIM is defined

as follows:

f(x) =

{
τ

1+3τ , x ∈ [0, τ ]
1+τ−2τe1−x

1+3τ , x ∈ [τ, 1]

g(x) =

{
1+τ
1+3τ , x ∈ [0, τ ]
2τ(1+x)e1−x

1+3τ , x ∈ [τ, 1]

η(x) =

{
τ

1+3τ , x ∈ [0, τ ]
2τ(1−xe1−x)

1+3τ , x ∈ [τ, 1]

BIM is depicted in Figure 4.1. All functions are constant in [0, τ ] and have (admittedly,

counter-intuitive at first glance) exponential terms in [τ, 1]. Interestingly, as we will show later,

this is the unique best possible bid-independent truthful mechanism. Its properties are proved

in the next statement.

Theorem 4.7. Mechanism BIM is truthful and has approximation ratio at most

1− 3W
(
− 1

2e

)
1−W

(
− 1

2e

) ≈ 1.37657,

whereW is the Lambert function.
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Figure 4.1: The lottery used by mechanism BIM.

Proof. Tedious calculations can verify that BIM is truthful. The function f is non-decreasing in

x and g is defined exactly as in equation (4.1); hence, ECh-IC follows by Lemma 4.2. ESw-IC

follows since f , g, and h satisfy the conditions of Lemma 4.6.

Now, let ρ = 1+3τ
1+τ . We use the definition of BIM and Lemma 4.5 to show the bound on the

approximation ratio. If x ∈ [0, τ ], inequalities (4.5) and (4.6) are clearly satisfied since x ≥ 0 and

x ≤ τ , respectively. If x ∈ [τ, 1], we have

2g(x) + xf(x) = 2
2α(1 + x)e1−x

1 + 3α
+ x

1 + α− 2αe1−x

1 + 3α
,

which is minimized for x = τ (recall that 2τ = eτ−1) at 2+2τ+τ2

1+3τ ≥ 2/ρ. Hence, inequality (4.5)

holds. Also, inequality (4.6) can be easily seen to hold with equality.

We now show that BIM is optimal among all bid-independent truthful mechanisms. The

proof of the next theorem exploits the characterization of ECh-IC mechanisms from Lemma

4.2, the characterization of ESw-IC bid-independent mechanisms from Lemma 4.6, and Lemma

4.5.

Theorem 4.8. The approximation ratio of any truthful bid-independent mechanism is at least

1− 3W
(
− 1

2e

)
1−W

(
− 1

2e

) ≈ 1.37657,

whereW is the Lambert function.

Proof. Let M be a bid-independent mechanism that uses functions g, f , and h to define

the probability of selecting the expert’s first, second, and third favourite option and has

approximation ratio ρ ≥ 1. By the necessary condition (4.1) for ECh-IC in Lemma 4.2, we know
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that

g(x) = g(0)− xf(x) +

∫ x

0
f(t)dt. (4.7)

Let α be any value in [0, 1].

Due to the fact that f(1) + g(1) ≤ 1, we have

g(0) +

∫ 1

0
f(t)dt ≤ 1. (4.8)

By the necessary condition for ESw-IC in Lemma 4.6 and since g is non-increasing (by Lemma

4.2), we also have f(x) ≥ η(x) = 1 − f(x) − g(x) ≥ 1 − f(x) − g(0), i.e., g(0) + 2f(x) ≥ 1, for

x ∈ (0, 1). Integrating in the interval (0, α], we get

αg(0) + 2

∫ α

0
f(t)dt ≥ α. (4.9)

Since, the mechanism is ρ–approximate, Lemma 4.5 yields

g(0) ≥ 1/ρ (4.10)

(by applying inequality (4.5) with x = 0) and

g(x) + (1 + x)f(x) ≥ (1 + x)/ρ,∀x ∈ [α, 1].

Using (4.7), this last inequality becomes

g(0) + f(x) +

∫ x

0
f(t)dt ≥ (1 + x)/ρ,∀x ∈ [α, 1].

Now, let λ be a continuous function with λ(x) ≤ f(x) in [α, 1] such that

g(0) +

∫ α

0
f(t)dt+

∫ x

α
λ(t)dt+ λ(x) = (1 + x)/ρ.

Setting Λ(x) =
∫ x
α λ(t)dt (clearly, Λ is differentiable due to the continuity of λ in [0, 1]), we get

the differential equation

g(0) +

∫ α

0
f(t)dt+ Λ(x) + Λ′(x) = (1 + x)/ρ

which, given that Λ(α) = 0, has the solution

Λ(x) =
x

ρ
− g(0)−

∫ α

0
f(t)dt+

(
g(0)− α

ρ
+

∫ α

0
f(t)dt

)
exp (α− x)

for x ∈ [α, 1]. Hence,∫ 1

α
f(t)dt ≥ Λ(1) =

1− αeα−1

ρ
−
(
1− eα−1

)
g(0)−

(
1− eα−1

) ∫ α

0
f(t)dt. (4.11)
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Now, by multiplying inequalities (4.8), (4.9), (4.10), and (4.11) by coefficients 2, eα−1, (2 −

α)eα−1, and 2, respectively, and then summing them, we obtain

ρ ≥ 2− αeα−1

2− 3αeα−1 + 2eα−1
.

Picking α = −W
(
− 1

2e

)
(i.e., α is the solution of the equation eα−1 = 2α), we get that

ρ ≥
1− 3W

(
− 1

2e

)
1−W

(
− 1

2e

) .
This completes the proof.

4.6 Expert-independent mechanisms

Here, we consider mechanisms that depend only on the bids. Now, it is convenient to use the

agents’ view of profiles
[
h ℓ n
1 y 0

]
. Then, an expert-independent mechanism can be thought

of as using univariate functions dM , cM , and eM which indicate the probability of selecting the

high-bidder, the low-bidder, and the option ⊘ in terms of the normalized low-bid y. Again,

we drop M from notation. Following the same roadmap as in the previous section, the next

lemma provides sufficient and necessary conditions for expert-independent mechanisms with

good approximation ratio.

Lemma 4.9. Let M be an expert-independent mechanism that uses functions d, c, and e with d(y) =

1− c(y) and e(y) = 0 for y ∈ [0, 1]. If

1

ρ
− 1− 1/ρ

y
≤ c(y) ≤ 2(1− 1/ρ)

2− y
(4.12)

for every y ∈ [0, 1], then M has approximation ratio at most ρ. Condition (4.12) is necessary for every

ρ–approximate expert-independent mechanism.

Proof. Consider the application ofM on the profile
[
h ℓ n
1 y 0

]
. We distinguish between two

cases. If 1 + h ≥ y + ℓ, assuming that condition (4.12) is true, the approximation ratio ofM is

1 + h

(y + ℓ)c(y) + (1 + h)(1− c(y))
=

1
y+ℓ
1+hc(y) + 1− c(y)

≤ 1

1− (1− y/2)c(y)
≤ ρ.

The first inequality follows since y+ℓ
1+h ≥ y/2when y ∈ [0, 1], while the second one is essentially

the right inequality in condition (4.12).
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Figure 4.2: A pictorial view of the statement in Lemma 4.9.

Otherwise, if 1 + h ≤ y + ℓ, the approximation ratio ofM is

y + ℓ

(y + ℓ)c(y) + (1 + h)(1− c(y))
=

1

c(y) + 1+h
y+ℓ (1− c(y))

≤ 1 + y

1 + yc(y)
≤ ρ.

The first inequality follows since 1+h
y+ℓ ≥

1
1+y when y ∈ [0, 1]; again, the second one is essentially

the left inequality in condition (4.12).

To see that condition (4.12) is necessary for every mechanism, first consider a mechanism

M ′ that uses functions c, d, and e such that the function c violates the left inequality in (4.12),

i.e., c(y∗) < 1
ρ −

1−1/ρ
y∗ for some y∗ ∈ [0, 1]. Then, using this inequality and the fact that d(y∗) ≤

1− c(y∗), the approximation ratio ofM ′ at profile
[
0 1 0
1 y∗ 0

]
is

y∗ + 1

(y∗ + 1)c(y∗) + d(y∗)
≥ 1 + y∗

1 + y∗c(y∗)
> ρ.

Now, assume that function c violates the right inequality in (4.12), i.e., c(y∗) > 2(1−1/ρ)
2−y∗ . Then,

using this inequality and the fact that d(y∗) ≤ 1−c(y∗), the approximation ratio ofM ′ at profile[
1 0 0
1 y∗ 0

]
is

2

2d(y∗) + y∗c(y∗)
≥ 2

2− (2− y∗)c(y∗)
> ρ

as desired.

Figure 4.2 shows the available space (grey area) for the definition of function c(y), so that

the corresponding mechanism has an approximation ratio of at most ρ = 7 − 4
√
2. It can be

easily verified that this is the minimum value for which the LHS of condition (4.12) in Lemma

4.9 is smaller than or equal to the RHS so that a function satisfying (4.12) does exist.
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Our aim now is to define an expert-independent truthful mechanism achieving the best

possible approximation ratio of ρ = 7− 4
√
2. Since the expert’s report is ignored, truthfulness

for the expert follows trivially.We restrict our attention to the design of amechanism that never

selects option ⊘, i.e., it has d(y) = 1 − c(y) for every y ∈ [0, 1]. Lemmas 4.1 and 4.9 guide this

design as follows. In order to be BCh-IC and ρ–approximate, our mechanism should use a non-

decreasing function c(y) in the space available by condition (4.12). Still, we need to guarantee

BSw-IC; the next lemma gives us the additional sufficient (and necessary) condition.

Lemma 4.10. A BCh-IC expert-independent mechanism is truthful if and only if d(1) ≥ c(1).

Proof. Consider an attempted bid swap according to which the low-bidder increases her

normalized bid of y so that it becomes the high-bidder and the normalized bid of the other

agent is y′. Essentially, this attempted bid swap modifies the initial profile
[
h ℓ n
1 y 0

]
to[

ℓ h n
1 y′ 0

]
. The deviating agent corresponds to the middle column in the initial profile and

has probability c(y) of being selected. In the new profile, she corresponds to the first column,

and has probability d(y′) of being selected. So, the necessary and sufficient condition so that

BSw-IC is guaranteed is c(y) ≤ d(y′) for every y, y′ ∈ [0, 1]. Since, by Lemma 4.1, c and d are

non-decreasing and non-increasing, respectively, this condition boils down to d(1) ≥ c(1).

The case in which the high-bidder decreases her bid so that it gets a normalized value of y′

is symmetric.

We are ready to propose our mechanism EIM, which uses functions

c(y) =

{
2(1−1/ρ)

2−y , y ∈ [0, 3−ρ
2 ]

1
ρ −

1−1/ρ
y , y ∈ [3−ρ

2 , 1]

for ρ = 7− 4
√
2 and d(y) = 1− c(y) for y ∈ [0, 1].

Essentially, EIM uses the blue line in the upper right plot of Figure 4.2, which consists of

the curve that upper bounds the grey area up to point 3−ρ
2 = 2

√
2−2 and the curve that lower-

bounds the grey area after that point. The properties of mechanism EIM are summarized in the

next statement. It should be clear though that the statement holds for every mechanism that

uses a non-decreasing function in the grey area that is below 1/2 (together with the restriction

d(y) = 1 − c(y), this is necessary and sufficient for BSw-IC). Given the discussion about the

optimality of ρ = 7 − 4
√
2 above, all these mechanisms are optimal within the class of expert-

independent mechanisms.
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Theorem 4.11. Mechanism EIM is truthful and has approximation ratio at most 7 − 4
√
2 ≈ 1.3431.

This ratio is optimal among all truthful expert-independent mechanisms.

4.7 Beyond expert-independent mechanisms

In this section, we present a template for the design of better truthful mechanisms, compared

to those presented in the previous sections. The template strengthens expert-independent

mechanisms by exploiting a single additional bit of information that allows to distinguish

between profiles that have the same (normalized) bid values.

We denote by T the set of mechanisms that are produced according to our template. In

order to define a mechanism M ∈ T , it is convenient to use the agents’ view of a profile

as
[
h ℓ n
1 y 0

]
. We partition the profiles of D into two categories. Category T1 contains all

profiles with ℓ > h or with ℓ = h such that the tie between the expert valuations ℓ and h is

resolved in favour of the low-bidder. All other profiles belong to category T2.

For each profile in category T1, mechanism M selects the low-bidder with probability

c(y, T1) that is non-decreasing in y and the high-bidder with probability 1− c(y, T1). For each

profile in category T2, mechanism M selects the low-bidder with probability 0, and the high-

bidder with probability 1. Different mechanisms following our template are defined using

different functions c(y, T1). The mechanisms of the template ignore neither the bids nor the

expert’s report; still, it is not hard to show that they are truthful.

Lemma 4.12. Every mechanismM ∈ T is truthful.

Proof. We first show that M is truthful for the agents. BCh-IC follows easily by Lemma 4.1,

since c(y, T1) and c(y, T2) are non-decreasing in y. To show BSw-IC, notice that a bid swap

attempt in a profile of category T1 yields a profile of category T2, and vice versa. This involves

either a high-bidder who decreases her bid to become the low-bidder in the new profile, or

the low-bidder who increases her bid to become the high-bidder in the new profile. In both

cases, the increase or decrease in the selection probability according toM follows the increase

or decrease of the deviating bid.

To show thatM is truthful for the expert, first observe that according to the expert’s view,

the lottery uses constant functions f , g, and h in terms of her valuation for her second favourite

option. Hence, Lemma 4.2 implies ECh-IC. To show ESw-IC, observe again that an expert’s

report swap attempt fromaprofile of categoryT1 creates a profile of categoryT2 andvice versa.
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The expectedutility thatM yields to the expert in the initial profile is ℓc(y, T1)+h(1−c(y, T1)) =

h+(ℓ−h)c(y, T1) ≥ h if it is of category T1 and h+(ℓ−h)c(y, T2) = h if it is of category T2. After

the deviation, the utility of the expert becomes ℓc(y, T1)+h(1−c(y, T1)) = h+(ℓ−h)c(y, T1) ≤ h

if the new profile is of category T1 and h + (ℓ − h)c(y, T2) = h if it is of category T2. Hence,

such a swap attempt is never profitable for the expert.

The next lemma is useful for proving bounds on the approximation ratio of mechanisms in

the template class T .

Lemma 4.13. Let M be a mechanism of T and ρ ≥ 1 be such that the function c(y, T1) used by M

satisfies
1

ρ
− 1− 1/ρ

y
≤ c(y, T1) ≤ 1− 1/ρ

1− y
.

Then,M has approximation ratio at most ρ.

Proof. Clearly, the approximation ratio of M in profiles of category T2 is always 1 since the

mechanism takes the optimal decision of selecting the high-bidder with probability 1.

Now, consider a profile
[
h ℓ n
1 y 0

]
of category T1, i.e., ℓ ≥ h. We distinguish between

two cases. If 1 + h ≥ y + ℓ, then the approximation ratio ofM is

1 + h

(y + ℓ)c(y, T1) + (1 + h)(1− c(y, T1))
=

1

1− c(y, T1) + y+ℓ
1+hc(y, T1)

≤ 1

1− (1− y)c(y, T1)
≤ ρ.

The first inequality follows since y+ℓ
1+h ≥ y when y ∈ [0, 1] and ℓ ≥ h ≥ 0 while the second one

is due to the right inequality in the condition of the lemma.

Otherwise, if 1 + h ≤ y + ℓ, the approximation ratio ofM is

y + ℓ

(y + ℓ)c(y, T1) + (1 + h)(1− c(y, T1))
=

1

c(y, T1) + 1+h
y+ℓ (1− c(y, T1))

≤ 1 + y

1 + yc(y, T1)
≤ ρ.

The first inequality follows since 1+h
y+ℓ ≥

1
1+y when y ∈ [0, 1] and h ≥ ℓ ≥ 0; again, the second

one is due to the left inequality in the condition of the lemma.

The conditions of Lemma 4.13 are depicted in the two plots of Figure 4.3 (for ρ = 5/4 and

ρ = ϕ, respectively). The grey area represents the available space for the definition of the (non-

decreasing) function c(y, T1) that a mechanism of T should use on profiles of category T1 so

that its approximation ratio is at most ρ.
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Figure 4.3: Pictorial views of the statement in Lemma 4.13 for ρ = 5/4 (left) and ρ = ϕ (right).

These plots explain the definition of the next two mechanisms that follow our template: the

randomized mechanism R and the deterministic mechanism D. For each profile of category

T1, mechanism R uses

cR(y, T1) =

{
1

5(1−y) , y ∈ [0, 4/5]

1, y ∈ [4/5, 1]

(i.e., the blue line in the lower left plot of Figure 4.2) and mechanism D uses

cD(y, T1) =

{
0, y ∈ [0, 1/ϕ]

1, y ∈ [1/ϕ, 1]

(i.e., the blue line in the lower right plot of Figure 4.2), where ϕ = 1+
√
5

2 ≈ 1.618 is the golden

ratio. Their properties are as follows.

Theorem 4.14. MechanismsR andD are 5/4– and ϕ–approximate truthful mechanisms, respectively.

Proof. Since R,D ∈ T , truthfulness follows by Lemma 4.12. Their approximation ratios follow

by Lemma 4.13 for ρ = 5/4 and ρ = ϕ, respectively.

We remark that the condition of Lemma 4.13 can be proved to be not only sufficient but also

necessary for achieving a ρ-approximation. Then, it can be easily seen that the value of 5/4 is

the lowest value for which the condition of the lemma is feasible. Hence, mechanism R is best

possible among mechanisms that use our template. More interestingly, 5/4 turns out to be the

lower bound of any mechanism that always sells the item, as we prove in the next theorem.

MechanismDwill be proved to be optimal among all deterministic truthful mechanisms in the

next section.

Theorem 4.15. The approximation ratio of any mechanism that always sells the item is at least 5/4.
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Proof. Consider preference profiles in agents’ view
[
h ℓ n
1 y 0

]
, and let M be any truthful

always-sell mechanism. Then, M can be thought of as using functions d(y, h, ℓ, n), c(y, h, ℓ, n)

and e(y, h, ℓ, n) to assign probabilities to the high-bidder, the low-bidder and the no-sale option,

respectively, such that d(y, h, ℓ, n) = 1− c(y, h, ℓ, n) and e(y, h, ℓ, n) = 0.

Since M is truthful for the expert, the expert does not have any incentive to misreport her

valuations from (h, ℓ, n) to (h′, ℓ′, n′), for any ℓ > h and ℓ′ > h′. This means that

h · (1− c(y, h, ℓ, n)) + ℓ · c(y, h, ℓ, n) ≥ h · (1− c(y, h′, ℓ′, n′)) + ℓ · c(y, h′, ℓ′, n′)

or, equivalently, since ℓ > h,

c(y, h, ℓ, n) ≥ c(y, h′, ℓ′, n′) (4.13)

Similarly, the expert does not have incentive to misreport her valuations from (h′, ℓ′, n′) to

(h, ℓ, n), for any ℓ > h and ℓ′ > h′. This gives us that

h′ · (1− c(y, h′, ℓ′, n′)) + ℓ′ · c(y, h′, ℓ′, n′) ≥ h′ · (1− c(y, h, ℓ, n)) + ℓ′ · c(y, h, ℓ, n)

or, equivalently, since ℓ′ > h′,

c(y, h′, ℓ′, n′) ≥ c(y, h, ℓ, n) (4.14)

Therefore, by (4.13) and (4.14), we have that c(y, h, ℓ, n) is constant in all profiles
[
h ℓ n
1 y 0

]
with ℓ > h.

Now, let ϵ ∈ (0, 1/2) and consider the following two profiles:[
0 1 0
1 1/2 0

]
and

[
0 ϵ 1
1 1/2 0

]
Since ℓ > h in both profiles, any truthful mechanism M that always sells the item behaves

identically in all such profiles, for any ϵ ∈ (0, 1/2). Hence, assume that such a mechanism M

selects the low-bidder with probability p (and the high-bidder with probability 1−p). Then, the

approximation ratio of M is at least the maximum between its approximation ratio for these

profiles, i.e.,

sup
ϵ∈(0,1/2)

{
3
2

1− p+ 3
2p

,
1

1− p+ (ϵ+ 1
2)p

}
= max

{
3

2 + p
,

2

2− p

}
.

This is minimized to 5/4 for p = 2/5.
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4.8 Unconditional lower bounds

In the previous sections, we presented (or informally discussed) lower bounds on the

approximation ratio of truthful mechanisms belonging to particular classes. Here, we present

our most general lower bound that holds for every truthful mechanism. The proof exploits the

ECh-IC characterization from Lemma 4.2.

Theorem 4.16. The approximation ratio of any truthful mechanism is at least 1.14078.

Proof. Let γ ∈ [0, 1] be such that 1− 2γ − 4γ2 − 2γ3 = 0 and β = (1 + γ)−1. The corresponding

values are β ≈ 0.7709 and γ ≈ 0.29716.

Consider any ρ–approximate truthful mechanism and the profiles(
1 β 0
γ 1 0

)
and

(
1 0 0
γ 1 0

)
.

Since the bids are identical in both profiles, we can assume that the functions f and g are

univariate (depending only on the expert’s second highest utility). Since the mechanism is ρ–

approximate in both profiles, we have

(1 + γ)g(β) + (1 + β)f(β) ≥ 1 + β

ρ
(4.15)

and

(1 + γ)g(0) + f(0) ≥ 1 + γ

ρ
. (4.16)

By condition (4.1) in Lemma 4.2, g(x) = g(0)− xf(x) +
∫ x
0 f(t)dt which, due to the fact that f

is non-decreasing (again by Lemma 4.2), yields
∫ β
0 f(t)dt ≥ βf(0). Hence,

g(x) ≥ g(0)− βf(β) + βf(0). (4.17)

Also, clearly,

1 ≥ g(β) + f(β). (4.18)

Now, multiplying inequalities (4.15), (4.16), (4.17), and (4.18) by the coefficients γ
β+2βγ−γ2 ,

β−γ
β+2βγ−γ2 , (β−γ)(1+γ)

β+2βγ−γ2 , and β(1+γ)
β+2βγ−γ2 , and by summing them, we get

ρ ≥ β + 2βγ − γ2

β(1 + γ)
.

Substituting β and γ, we obtain that ρ ≥ 1.14078 as desired.
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Our last statement shows that mechanismD, which was presented in Section 4.7, is optimal

among all deterministic truthful mechanisms.

Theorem 4.17. No truthful deterministic mechanism has approximation ratio better than ϕ.

Proof. LetM be a deterministic truthful mechanism. Consider a profile
(

1 x 0
h ℓ z

)
for some

combination of values for h, ℓ, and z. We first show that M selects the same option for every

value of x ∈ (0, 1). Indeed, assume otherwise; due to Lemma 4.2, f must be non-decreasing

in x and, hence, f(x1, h, ℓ, z) = 0 and f(x2, h, ℓ, z) = 1 for two different values x1 and x2 in

(0, 1)with x1 < x2. Let x3 ∈ (x2, 1), i.e., f(x3, h, ℓ, z) = 1 due to monotonicity. Property (4.1) in

Lemma 4.2 requires that

g(x3, h, ℓ, z) = g(0, h, ℓ, z)− x3 +

∫ x3

0
f(t, h, ℓ, z)dt.

By our assumptions on f (and due to its monotonicity), we also have that

x3 − x2 ≤
∫ x3

0
f(t, h, ℓ, z)dt ≤ x3 − x1.

These last two (in)equalities imply that g(0, h, ℓ, z)− g(x3, h, ℓ, z) lies between x2 and x3, i.e., it

is non-integer. This contradicts the fact thatM is deterministic.

Now let ϵ > 0 be negligibly small and consider the two profiles(
1 1− ϵ 0
0 1/ϕ 1

)
and

(
1 ϵ/ϕ2 0
0 1/ϕ 1

)
.

IfM selects the low-bidder in both profiles, its approximation ratio at the right one is 1
ϵ/ϕ2+1/ϕ

≥

ϕ − ϵ. Otherwise, its approximation ratio at the left profile is 1 + 1/ϕ − ϵ. In any case, the

approximation ratio is at least ϕ− ϵ, and the proof is complete.

Of course, Theorem 4.17 is meaningful for cardinal mechanisms. Deterministic ordinal

mechanisms can be easily seen to be at least 2–approximate.

4.9 Conclusion

In this chapter we focused on designing truthful mechanisms for a simple ownership transfer

scenario with two agents and one expert. The agents have monetary values for an item that

is up for sale, while the expert has values over the different options of selling to some agent

or not selling at all. The goal was to design mechanisms to incentivize all parties to truthfully

report their values, while at the same time maximize the social welfare that takes into account

the values of the agents and the expert for the outcome.
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We considered several different classes of truthful mechanisms depending on the level of

information that they used. For each such class, we identified the best possible mechanism

in terms of the approximation ratio of the optimal social welfare. Indicatively, we showed an

unconditional lower bound of 1.14 on the approximation ratio of all mechanisms, and designed

a particular randomized mechanism with approximation ratio of 1.25, that uses the cardinal

information provided by the agents as well as a single extra bit of information by the expert

that allows for a classification of the possible valuation profiles.
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Chapter 5

Near-optimal asymmetric binary matrix
partitions

In this chapter, we study the asymmetric binary matrix partition problem and design simple

algorithms with improved approximation guarantees; for a short introduction to the problem

and possible applications for revenue maximization in take-it-or-leave-it sales by exploiting

information asymmetry see the discussion in Section 1.4. The results that we present here have

been published in [Abed et al., 2018].

5.1 Problem definition and overview of contribution

Consider an n × m matrix A with non-negative entries and a probability distribution p over

its columns; pj denotes the probability associated with column j. We distinguish between

two cases for the probability distribution over the columns of the given matrix, depending

on whether it is uniform or non-uniform. A partition scheme B = (B1, ..., Bn) for matrix A

consists of a partition Bi of [m] for each row i of A. More specifically, Bi is a collection of ki

pairwise disjoint subsetsBik ⊆ [m] (with 1 ≤ k ≤ ki) such that
∪ki

k=1Bik = [m]. We can think of

each partition Bi as a smoothing operator, which acts on the entries of row i and changes their

value to the expected value of the partition subset they belong to. Formally, the smooth value of

an entry (i, j) such that j ∈ Bik is defined as

AB
ij =

∑
ℓ∈Bik

pℓ ·Aiℓ∑
ℓ∈Bik

pℓ
. (5.1)

Notice that all entries (i, j) such that j ∈ Bik have the same smooth value. Given a scheme B

that induces the smoothmatrixAB , the resulting partition value is the expectedmaximum column
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entry of AB , namely,

vB(A, p) =
∑
j∈[m]

pj ·max
i

AB
ij . (5.2)

The objective of the asymmetric binary matrix partition problem is to find a partition scheme B

such that the resulting partition value vB(A, p) is maximized.

The problem was first introduced by Alon et al. [2013] who proved it to be APX-hard even

for input matrices containing binary values and uniform probability distributions. Further, for

the binary version, they presented a 0.563– and a 1/13–approximation algorithms for the cases

where the probability distribution over the columns of the input matrix is uniform and non-

uniform, respectively. We significantly improve both of these results, by designing a 9/10–

approximation algorithm for the uniform case and a (1 − 1/e)–approximation algorithm for

non-uniform distributions.

For the uniform case, the algorithm of Alon et al. [2013] use several interesting phases. We

borrow two of them, namely a covering and a greedy completion phase, which we put together

into an intuitive greedy algorithm. Despite the purely combinatorial nature of this algorithm,

to analyze it and prove its approximation ratio, we exploit linear programming techniques and

duality.

For non-uniform distributions, we exploit a nice relation of asymmetric matrix partition to

submodular welfare maximization, and use well-known algorithms from the literature. First,

we discuss the application of a simple greedy 1/2–approximation algorithm that has been

studied by Lehmann et al. [2006]. Then, we apply the smooth greedy algorithm of Vondrák

[2008] to achieve a (1 − 1/e)–approximation for our problem, which is optimal in the value

query model due to Khot et al. [2008]. In a more powerful model where it is assumed that

demand queries can be answered efficiently, Feige andVondrák [2010] proved that (1−1/e+ϵ)–

approximation algorithms are possible, where ϵ is a small positive constant. We briefly discuss

the possibility/difficulty of applying such algorithms to asymmetric binary matrix partition

and observe that the corresponding demand query problems are, in general, NP-hard.

5.1.1 Chapter roadmap

In the following, shortly discuss other related work in Section 5.2. Then, we give preliminary

definitions and examples, and prove several important structural observations in Section 5.3.

We present our 9/10–approximation algorithm for the case where the probability distribution

over the columns of thematrix is uniform in Section 5.4. Our (1−1/e)–approximation algorithm
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for the non-uniform case is analyzed in Section 5.5. We conclude with a short synopsis in

Section 5.6.

5.2 Related work

Apart from the binary version of the asymmetric matrix partition problem, Alon et al. [2013]

considered also themore general case of inputmatrices with non-binary entries, for which they

presented a 1/2– and an Ω(1/ logm)–approximation algorithm for uniform and non-uniform

distributions, respectively. A common idea underlying these results is that they try to identify

a set of high-value entries that can be bundled together with other entries in order to increase

the total contribution.

The possible application of asymmetric matrix partition to revenue maximization in take-

it-or-leave-it sales (see Section 1.4) falls within the line of research that studies the impact of

information asymmetry to the quality of markets. Akerlof [1970] was the first to introduce a

formal analysis of the markets for lemons, where the seller has much more accurate information

than the buyers regarding the quality of the products.

The particular approach of partitioning in take-it-or-leave-it sales is closer in spirit to the

strategic information transmission that was initiated in the work of Crawford and Sobel [1982],

where the seller has information about the valuations of the buyers, and strategically aims to

exploit this advantage in order tomaximize her revenue. In order for such an approach towork,

an additional constraint is that the potential buyers need to be unaware of each other as well

as of details of the underlying mechanism which could be used to extract information about

the quality of the items. If this not possible, then the linkage principle of Milgrom and Weber

[1982] suggests that the seller should reveal all possible information to the buyers in order to

maximize her revenue.

Levin and Milgrom [2010] as well as Milgrom [2010] suggest that careful bundling of the

items is the best way to exploit information asymmetry.Many different frameworks that reveal

different kinds of information to the bidders have been proposed in the literature over the years.

For instance, Ghosh et al. [2007] considered full information and proposed a clustering scheme

according to which, the items are partitioned into bundles and, then, for each such bundle, a

separate second-price auction takes place. Thisway, the potential buyers cannot bid only for the

items that they actually want, but have to also compete for items that they do not value much.

Hence, the demand for each item is increased and the revenue of the seller gets increased. Emek
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et al. [2012] and Dughmi [2014] presented several complexity results in similar settings, while

Miltersen and Sheffet [2012] considered fractional bundling schemes for signaling.

Finally, it is worthmentioning that exploiting linear programming for the analysis of purely

combinatorial algorithms, like we did in Section 5.4, is a now well-established technique that

has already been used in many different settings, such as facility location [Jain et al., 2003],

variants of set cover [Athanassopoulos et al., 2009a,b, Caragiannis et al., 2013], online matching

[Mahdian and Yan, 2011], maximum directed cut [Feige and Jozeph, 2015], and wavelength

routing [Caragiannis, 2009].

5.3 Definitions, examples and structural observations

An algorithm for the asymmetric matrix partition that computes a partition scheme with value

that is at least ρ ∈ [0, 1] times the partition value of the best possible partition scheme is called

a ρ–approximation algorithm. Henceforth, we focus our attention on the case where the input

matrix A consists only of binary values.

Let A+ = {j ∈ [m] : there exists a row i such that Aij = 1} denote the set of columns of A

that contain at least one 1-value entry, and A0 = [m]\A+ denote the set of columns of A that

contain only 0-value entries. In the next sections, we usually refer to the sets A+ and A0 as the

sets of one-columns and zero-columns, respectively. Furthermore, let A+
i = {j ∈ [m] : Aij = 1}

and A0
i = {j ∈ [m] : Aij = 0} denote the sets of columns that intersect with row i at a 1- and 0-

value entry, respectively. All columns inA+
i are one-columns and, furthermore,A+ = ∪ni=1A

+
i .

The columns of A0
i can be either one- or zero-columns and, thus, A0 ⊆ ∪ni=1A

0
i . Also, denote

by r =
∑

j∈A+ pj the total probability of the one-columns. As an example, consider the 3 × 6

matrix

A =

 0 1 1 0 1 0
0 1 1 0 1 0
0 1 1 0 0 0


and a uniform probability distribution over its columns. We have A+ = {2, 3, 5} and A0 =

{1, 4, 6}. In the first two rows, the sets A+
i and A0

i are identical to A+ and A0, respectively. In

the third row, the sets A+
3 and A0

3 are {2, 3} and {1, 4, 5, 6}. Finally, the total probability of the

one-columns r is 1/2.

A partition scheme B can be thought of as consisting of n partitions B1, B2, ..., Bn of the

set of columns [m]. We use the term bundle to refer to the elements of a partition Bi; a bundle

is just a non-empty set of columns. For a bundle b of partition Bi corresponding to row i, we

108



say that b is an all-zero bundle if b ⊆ A0
i and an all-one bundle if b ⊆ A+

i . A singleton all-one

bundle of partition Bi is called column-covering bundle in row i. A bundle that is neither all-zero

nor all-one is calledmixed. A mixed bundle corresponds to a set of columns that intersects with

row i at both 1- and 0-value entries.

Let us examine the followingpartition schemeB formatrixA that defines the smoothmatrix

AB according to equation (5.1).

B1 {1, 2, 3, 4}, {5, 6}
B2 {1, 2}, {3}, {4, 6}, {5}
B3 {1, 4, 6}, {2, 3, 5}

AB
1/2 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1 0 1 0
0 2/3 2/3 0 2/3 0

maxiAB
ij 1/2 2/3 1 1/2 1 1/2

Here, the bundle {1, 2, 3, 4} of (the partition B1 of) the first row is a mixed one. The bundle

{3} of B2 is all-one and, in particular, column-covering in row 2. The bundle {1, 4, 6} of B3 is

all-zero.

By equation (5.2), the partition value is 25/36 and it can be further improved. First, observe

that the leftmost zero-column is included in twomixed bundles (in the first two rows). Also, the

mixed bundle in the third row contains a one-column that has been covered through a column-

covering bundle in the second row and intersects with the third row at a 0-value entry. Let us

modify these two bundles.

B′
1 {1}, {2, 3, 4}, {5, 6}

B′
2 {1, 2}, {3}, {4, 6}, {5}

B′
3 {1, 4, 5, 6}, {2, 3}

AB′
0 2/3 2/3 2/3 1/2 1/2
1/2 1/2 1 0 1 0
0 1 1 0 0 0

maxiAB′
ij 1/2 1 1 2/3 1 1/2

The partition value becomes 7/9 > 25/36. Now, by merging the two mixed bundles {2, 3, 4}

and {5, 6} in the first row,we obtain the smoothmatrix belowwith partition value 47/60 > 7/9.

Observe that the contribution of column 4 to the partition value decreases but, overall, we have

an increase in the partition value due to the increase in the contribution of column 6. Actually,

such merges never decrease the partition value (see Lemma 5.1 below).

B′′
1 {1}, {2, 3, 4, 5, 6}

B′′
2 {1, 2}, {3}, {4, 6}, {5}

B′′
3 {1, 4, 5, 6}, {2, 3}

AB′′
0 3/5 3/5 3/5 3/5 3/5

1/2 1/2 1 0 1 0
0 1 1 0 0 0

maxiAB′′
ij 1/2 1 1 3/5 1 3/5

Finally, by merging the bundles {1, 2} and {3} in the second row and decomposing the bundle

{2, 3} in the last row into two singletons, the partition value becomes 73/90 > 47/60which can
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be verified to be optimal.

B′′′
1 {1}, {2, 3, 4, 5, 6}

B′′′
2 {1, 2, 3}, {4, 6}, {5}

B′′′
3 {1, 4, 5, 6}, {2}, {3}

AB′′′
0 3/5 3/5 3/5 3/5 3/5

2/3 2/3 2/3 0 1 0
0 1 1 0 0 0

maxiAB′′′
ij 2/3 1 1 3/5 1 3/5

We will now give some more definitions that will be useful in the following. We say that

a one-column j is covered by a partition scheme B if there is at least one row i in which {j}

is column-covering. For example, in B′′′, the singleton {5} is a column-covering bundle in the

second row and the singletons {2} and {3} are column-covering in the third row. We say that

a partition scheme fully covers the set A+ of one-columns if all of them are covered. In this case,

we use the term full cover to refer to the pairs of indices (i, j) of the 1-value entriesAij such that

{j} is a column-covering bundle in row i. For example, the partition scheme B′′′ has the full

cover (2, 5), (3, 2), (3, 3).

It turns out that optimal partition schemes always have a special structure like the one of

B′′′. Alon et al. [2013] formalized observations like the above into the following statement.

Lemma 5.1 (Alon et al. [2013]). Given a uniform instance of the asymmetric binary matrix partition

problem with a matrix A, there is an optimal partition scheme B with the following properties:

P1. B fully covers the set A+ of one-columns.

P2. For each row i, Bi has at most one bundle containing all columns of A+
i that are not included in

column-covering bundles in row i (if any). This bundle can be either all-one (if it does not contain

zero-columns) or the unique mixed bundle of row i.

P3. For each zero-column j, there exists at most one row i such that j is contained in the mixed bundle

of Bi (and j is contained in the all-zero bundles of the remaining rows).

P4. For each row i, the zero-columns that are not contained in the mixed bundle ofBi form an all-zero

bundle.

Properties P1 and P3 imply that we can think of the partition value as the sum of the

contributions of the column-covering bundles and the contributions of the zero-columns in

mixed bundles. Property P2 comes from the following more general statement that has been

proved by Alon et al. [2013]; we give an alternative more direct proof here using Milne

inequality [Hardy et al., 1934, page 61]. Lemma 5.2 will be very useful several times in our

analysis in both the uniform and the non-uniform case.
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Lemma 5.2 (Alon et al. [2013]). Consider t ≥ 2 mixed bundles. For i = 1, ..., t, bundle i contains

1-value entries of total probability xi and zero-columns of probability yi. The total contribution of the

zero-columns in these mixed bundles to the partition value is upper bounded by the contribution of

zero-columns of probability
∑t

i=1 yi that form a single mixed bundle together with 1-value entries of

probability
∑t

i=1 xi.

Proof. By the definitions, the smooth value of the i-th bundle is xi
xi+yi

and the contribution of its

zero-columns to the the partition value is xiyi
xi+yi

. The proof follows by Milne inequality which

states that
t∑

i=1

xiyi
xi + yi

≤
∑t

i=1 xi ·
∑t

i=1 yi∑t
i=1 xi +

∑t
i=1 yi

,

where the right-hand side expression is the contribution of the zero-columns in the partition

value of the single mixed bundle.

Now, property P2 should be apparent; the columns ofA+
i that do not form column-covering

bundles in row i are bundled together with zero-columns (if possible) in order to increase the

contribution of the latter to the partition value. Property P4makesB consistent to the definition

of a partition scheme where the disjoint union of all the partition subsets in a row should be

[m]. Clearly, the contribution of the all-zero bundles to the partition value is 0. Also, the non-

column-covering all-one bundles do not contribute to the partition value either.

Unfortunately, as we will see later in Section 5.5, Lemma 5.1 does not hold for non-uniform

instances. This is due only to property P1 which requires a uniform probability distribution

over columns. Luckily, it turns out that non-uniform instances also exhibit some structure

(recall that the crucial Lemma 5.2 applies to the non-uniform case as well), which allows us

to consider the problem of computing an optimal partition scheme as a welfare maximization

problem. In welfare maximization, there are m items and n agents; agent i has a valuation

function vi : 2[m] → R+ that specifies her value for each subset of the items. I.e., for a set S

of items, vi(S) represents the value of agent i for S. Given a disjoint partition (or allocation)

S = (S1, S2, ..., Sn) of the items to the agents, where Si denotes the set of items allocated to

agent i, the social welfare is the sum of values of the agents for the sets of items allocated

to them, i.e., SW(S) =
∑

i vi(Si). The term welfare maximization refers to the problem of

computing an allocation of maximum social welfare. We will discuss only the variant of the

problem where the valuations are monotone and submodular; following the literature, we use

the term submodular welfare maximization to refer to it.
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Definition 5.1. A valuation function v is monotone if v(S) ≤ v(T ) for any pair of sets S, T such

that S ⊆ T . A valuation function v is submodular if v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T ) for

any pair of sets S, T such that S ⊆ T and for any item x.

An important issue in (submodular) welfare maximization arises with the representation

of valuation functions. A valuation function can be described in detail by listing explicitly the

values for each of the possible subsets of items. Unfortunately, this is clearly inefficient due to

the necessity for exponential input size. A solution that has been proposed in the literature is

to assume access to these functions by queries of a particular form. The simplest such form of

queries reads as

What is the value of agent i for the set of items S?

These are known as valuation queries. Another type of queries, known as demand queries, are

phrased as follows:

Given a non-negative price for each item, compute a set S of items for which the

difference of the valuation of agent i minus the sum of prices for the items in S is

maximized

Approximation algorithms that use a polynomial number of valuation or demand queries and

obtain solutions to submodular welfare maximization with a constant approximation ratio are

well-known in the literature (e.g. see the papers of Feige and Vondrák [2010], Lehmann et al.

[2006], Vondrák [2008]). Our improved approximation algorithm for the non-uniform case of

asymmetric binary matrix partition exploits such algorithms.

5.4 The uniform case

In this section, we focus on the case where the probability distribution p over the columns of

the givenmatrix is uniform and present the analysis of a greedy approximation algorithm. Our

algorithm uses a greedy completion procedure that was also considered by Alon et al. [2013]. This

procedure starts from a full cover of the matrix, i.e., from column-covering bundles in some

rows so that all one-columns are covered (by exactly one column-covering bundle). Once this

initial full cover is given, the set of columns from A+
i that are not included in column-covering

bundles in row i can form amixed bundle togetherwith some zero-columns in order to increase

the contribution of the latter to the partition value. Greedy completion proceeds as follows. It
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goes over the zero-columns, one by one, and adds a zero-column to themixed bundle of the row

that maximizes the marginal contribution of the zero-column. The marginal contribution of a

zero-column to the partition value when it is added to a mixed bundle that consists of x zero-

columns and y one-columns is proportional (due to the uniform distribution over columns) to

the quantity

∆(x, y) = (x+ 1)
y

x+ y + 1
− x

y

x+ y
=

y2

(x+ y)(x+ y + 1)
.

The right-hand side of the first equality is simply the difference between the contribution of

x + 1 and x zero-columns to the partition value when they form a mixed bundle with y one-

columns. Note that ∆(0, y) indicates the marginal contribution of a zero-column when put

together with y one-columns to form a (new) mixed bundle. Alon et al. [2013] made the next

extremely important observation. We extensively use it below, as well as the fact that ∆(x, y)

is non-decreasing with respect to y.

Lemma 5.3 (Alon et al. [2013]). Among all partition schemes that include a given full cover, the greedy

completion procedure yields the maximum contribution from the zero-columns to the partition value.

Our algorithm consists of two phases. In the first phase, called the cover phase, the algorithm

computes an arbitrary full cover for set A+. In the second phase, called the greedy phase, it

simply runs the greedy completion procedure mentioned above. Note that, intentionally, we

have not used much detail in the description of the algorithm and there are three issues that

might seem to cause ambiguity at first glance. First, we have not described any particular way

the full cover is constructed. Second, we have not defined some particular order in which the

zero-columns are examined during the greedy phase. And, third, we have not discussed how

ties are broken when there are multiple rows that maximize the marginal contribution of a

zero-column. So, our description essentially defines a family of greedy algorithms; a different

greedy algorithm is defined, depending on how the above three issues are implemented. In

the rest of this section, we will show that any greedy algorithm has an approximation ratio

of at least 9/10; actually, the three issues do not affect the analysis at all. We will also show

that our analysis is tight by presenting a simple instance for which some greedy algorithm

is at most 9/10–approximate. Even though greedy algorithms are purely combinatorial, our

analysis exploits linear programming duality. In the following, unless otherwise specified, the

term greedy algorithm refers to any member of the family of greedy algorithms.

Overall, the partition value obtained by the algorithm can be thought of as the sum of

contributions from column-covering bundles (this is exactly r) plus the contribution from the
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mixed bundles created during the greedy phase (i.e., the contribution from the zero-columns).

Denote by ρ the ratio between the total number of appearances of one-columns in the mixed

bundles of the optimal partition scheme (so, the number of times each one-column is counted

equals the number of mixed bundles that contain it) and the number of zero-columns. For

example, in the partition scheme B′′′ in the example of the previous section, the two mixed

bundles are {2, 3, 4, 5, 6} in the first row and {1, 2, 3} in the second row. So, the one-columns

2 and 3 appear twice while the one-column 5 appears once in these mixed bundles. Since we

have three zero-columns, the value of ρ is 5/3. We can use the quantity ρ to upper-bound the

optimal partition value as follows.

Lemma 5.4. The optimal partition value is at most r + (1− r) ρ
ρ+1 .

Proof. The first term in the above expression represents the contribution of the one-columns in

the full cover of the optimal partition scheme. To reason about the second term, recall that our

definitions imply that the total probability of one-columns in the mixed bundles of an optimal

partition scheme is ρ(1−r), while the total probability of zero-columns in these mixed bundles

is 1−r. By Lemma 5.2, the second termupper-bounds the total contribution of the zero-columns

to the optimal partition value.

In our analysis, we distinguish between two main cases depending on the value of ρ. The

first case is when ρ < 1; in this case, we show that the additional partition value which is

obtained during the greedy phase of the algorithm (i.e., the contribution of the zero-columns;

recall that the greedy algorithm maximizes this quantity) is lower-bounded by the additional

partition value we would have by creating bundles containing exactly one one-column and an

almost equal number of zero-columns each.

Lemma 5.5. If ρ < 1, then the partition value obtained by the algorithm is at least 0.97 times the optimal

one.

Proof. Using the definition of ρ, we can lower-bound the number of 1-value entries in the input

matrixA by the sum of themr column-covering bundles that form the full cover of the optimal

partition scheme and the at least ρm(1− r) appearances of one-columns in the mixed bundles.

Now, consider a selection of the full cover during the cover phase of the greedy algorithm

(this can, of course be different than the full cover of the optimal partition scheme) and let X
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be a set of (exactly) ρm(1−r) 1-value entries in the matrixA among those that are not included

in the cover.

Using Lemma 5.3, we will lower-bound the partition value returned by the algorithm

by considering the following formation of mixed bundles as an alternative to the greedy

completion procedure used in the greedy phase. If 1/ρ is an integer, for each 1-value entry

of X , we create a mixed bundle that contains the corresponding one-column together with

1/ρ distinct zero-columns. Hence, the smooth value of each zero-column is 1
1+1/ρ and the total

partition value of this scheme is r + (1− r) ρ
ρ+1 ; by Lemma 5.4, this is optimal.

If instead 1/ρ is not an integer, let k = ⌊1/ρ⌋. For each 1-value entry of X , we create a

mixed bundle that contains the corresponding one-column together with k or k + 1 distinct

zero-columns. In particular,m(1− r)(1− ρk) of these mixed bundles contain one one-column

and k + 1 zero-columns and the remainingm(1− r)(ρ(k + 1)− 1)mixed bundles contain one

one-column and k zero-columns. Observe that the smooth value of a zero-column is 1
k+2 in the

first case and 1
k+1 in the second case. Hence, we can bound the partition value obtained by the

algorithm as follows:

ALG ≥ r + (1− r)(1− ρk)
k + 1

k + 2
+ (1− r)(ρ(k + 1)− 1)

k

k + 1

= r + (1− r)
1 + ρk(k + 1)

(k + 1)(k + 2)
.

Using Lemma 5.4, we have

ALG
OPT

≥
r + (1− r) 1+ρk(k+1)

(k+1)(k+2)

r + (1− r) ρ
ρ+1

≥
1+ρk(k+1)
(k+1)(k+2)

ρ
ρ+1

=
(1 + 1/ρ)(1 + ρk(k + 1))

(k + 1)(k + 2)
.

This last expression is minimized (with respect to ρ) for 1/ρ =
√

k(k + 1). Hence,

ALG
OPT

≥

(
1 +

√
k(k + 1)

)2
(k + 1)(k + 2)

,

which is minimized for k = 1 to approximately 0.97.

For the case ρ ≥ 1, we use completely different arguments. Of course, we assume that r < 1,

i.e., the input matrix contains some zero-columns since, otherwise, any full cover computed

during the cover phase of the greedy algorithm would give an optimal partition value. We

will reason about the partition value of the solution produced by the algorithm by considering

a particular decomposition of the set of mixed bundles computed in the greedy phase. Then,

using Lemmas 5.2 and 5.3, the contribution of the zero-columns to the partition value in the
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solution computed by the algorithm is lower-bounded by their contribution to the partition

value when they are part of the mixed bundles obtained after the decomposition. To justify the

correctness of the decomposition, we will use the following observation.

Lemma 5.6. If ρ ≥ 1, no mixed bundle computed by the greedy algorithm has more zero-columns than

one-columns.

Proof. First observe that the total number of appearances of one-columns inmixed and column-

covering bundles in the optimal partition scheme is at least rm + (1 − r)ρm, which includes

rm appearances of one-columns in column-covering bundles and (1 − r)ρm appearances of

one-columns in mixed bundles (there may be additional 1-value entries included in all-one

bundles). So, after the end of the cover phase, there are at least (1 − r)ρm ≥ (1 − r)m 1-value

entries that can be included in mixed bundles together with the (1− r)m zero-columns.

Assume, for the sake of contradiction, that some zero-column Z is included as the (x+1)-th

zero-column in a mixed bundle b together with x 1-value entries for x ≥ 1 at some step of the

greedy phase. Prior to that step, there is either some 1-value entry not included in any mixed

bundlewhich could be used to formamixed bundle togetherwithZ for amarginal contribution

of∆(0, 1) = 1/2 or somemixed bundle with y ≥ 1 zero-columns and y+α 1-value entries (with

α ≥ 1) in which case the marginal contribution would be ∆(y, y + α) > 1/4. This contradicts

the definition of the greedy algorithm since the marginal contribution of Z was ∆(x, x) < 1/4

when included in b.

Now, the decomposition procedure is defined as follows. It takes as input a mixed bundle

with y zero-columns and x one-columns (by Lemma 5.6, it must be x ≥ y) and decomposes it

into y bundles as follows. If x/y is an integer, each bundle has one zero-column and x/y one-

columns. Otherwise, x − y⌊x/y⌋ bundles have one zero-column and ⌈x/y⌉ one-columns and

y⌈x/y⌉ − x bundles have one zero-column and ⌊x/y⌋ one-columns. Clearly, this process does

not alter bundles with a single zero-column. The solution obtained after the decomposition of

the solution returned by the algorithm has a very special structure as our next lemma suggests.

Lemma 5.7. There exists an integer s ≥ 1 such that each bundle in the decomposition has at least s and

at most 3s one-columns.

Proof. Consider the application of the decomposition procedure to the mixed bundles that are

computed by the algorithm and let s be the minimum number of one-columns among the
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decomposed mixed bundles. This implies that one of the mixed bundles, say b1, computed

by the algorithm has µ zero-columns and at most (s+ 1)µ− 1 one-columns. Denoting by ν the

number of one-columns in this bundle, we have that the marginal partition value when the last

zero-column Z is included in b1 is exactly

∆(µ, ν) =
ν2

(ν + µ)(ν + µ− 1)
≤ ((s+ 1)µ− 1)2

((s+ 2)µ− 1)((s+ 2)µ− 2)

since∆(µ, ν) is increasing in ν and ν ≤ (s+ 1)µ− 1. The rightmost expression is decreasing in

µ and µ ≥ 1; hence, the marginal partition value of Z is at most s
s+1 .

Now assume for the sake of contradiction that one of the mixed bundles obtained after the

decomposition has at least 3s + 1 one-columns. Clearly, this must have been obtained by the

decomposition of a mixed bundle b2 (returned by the algorithm) with λ zero-columns and at

least (3s + 1)λ one-columns. Denote by ν ′ the number of one-columns in this bundle and let

us compute the marginal partition value if the zero-column Z would be included in b2. This

would be

∆(λ+ 1, ν ′) =
ν ′2

(ν ′ + λ+ 1)(ν ′ + λ)
≥ (3s+ 1)2λ

((3s+ 2)λ+ 1)(3s+ 2)
≥ (3s+ 1)2

(3s+ 3)(3s+ 2)
.

The first inequality follows since the marginal partition value function is increasing in ν ′ and

ν ′ ≥ (3s + 1)λ, and the second one follows since λ ≥ 1. Now, the last quantity can be easily

verified to be strictly higher that s
s+1 and the algorithm should have included Z in b2 instead.

We have reached the desired contradiction that proves the lemma.

Now, our analysis proceeds as follows. For every triplet r ∈ [0, 1], ρ ≥ 1 and integer

s ≥ 1, we will prove that any solution consisting of an arbitrary cover of the rm one-columns

and the decomposed set of bundles containing at least s and at most 3s one-columns yields

a 9/10–approximation of the optimal partition value. By the discussion above (in particular,

by Lemmas 5.2 and 5.3), this will also be the case for the solution returned by the algorithm.

In order to account for the worst-case contribution of zero-columns to the partition value for

a given triplet of parameters, we will use the following linear program, which we denote by

LP(r, ρ, s):

minimize
3s∑
k=s

k

k + 1
θk

subject to:
3s∑
k=s

θk = 1− r
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3s∑
k=s

kθk ≥ ρ(1− r)− r

θk ≥ 0, k = s, ..., 3s

The variable θk corresponds to the total probability of the zero-columns that participate in

decomposed mixed bundles with k one-columns. The objective is to minimize the contribution

of the zero-columns to the partition value. The equality constraint means that all zero-columns

have to participate in bundles, while the inequality constraint requires that the total number

of appearances of one-columns in bundles used by the algorithm is at least the total number

of appearances of one-columns in mixed bundles of the optimal partition scheme minus one

appearance for each one-column, since for every selection of the cover, the algorithmwill have

the same number of (appearances of) one-columns available to form mixed bundles.

Informally, the linear program answers (pessimistically) to the question of how inefficient

the algorithm can be. In particular, given an instance with parameters r and ρ, the quantity

minint s≥1 LP(r, ρ, s) lower-bounds the contribution of the zero-columns to the partition value

and r+minint s≥1 LP(r, ρ, s) is a lower bound on the partition value. The next lemma completes

the analysis of the greedy algorithm for the case ρ ≥ 1.

Lemma 5.8. For every r ∈ [0, 1] and ρ ≥ 1,

r + min
int s≥1

LP(r, ρ, s) ≥ 9

10
OPT.

Proof. We will prove the lemma using LP-duality. The dual of LP(r, ρ, s) is:

maximize (1− r)α+ ((1− r)ρ− r))β

subject to: kβ + α ≤ k

k + 1
, k = s, ..., 3s

β ≥ 0

Using Lemma 5.4, we bound the optimal partition value as

OPT ≤ r + (1− r)
ρ

ρ+ 1
=

ρ+ r

ρ+ 1
.

Hence, it suffices to show that, for every triplet of parameters (r, ρ, s), there is a feasible dual

solution of objective value D(r, ρ, s) that satisfies

r +D(r, ρ, s)− 9

10

ρ+ r

ρ+ 1
≥ 0. (5.3)
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The feasible region of the dual is defined by the lines β = 0, α = s
s+1 − sβ and α = 3s

3s+1 − 3sβ;

the remaining constraints can be easily seen to be redundant. The two important intersections

of those lines are the points

(α, β) =

(
s

s+ 1
, 0

)
and (α, β) =

(
3s2

(s+ 1)(3s+ 1)
,

1

(s+ 1)(3s+ 1)

)
with objective values

D1(r, ρ, s) =
s

s+ 1
(1− r) and D2(r, ρ, s) =

3s2

(s+ 1)(3s+ 1)
(1− r) +

ρ(1− r)− r

(s+ 1)(3s+ 1)
,

respectively. We will show that one of these two points can always be used as a feasible dual

solution in order to prove inequality (5.3). We distinguish between two cases.

Case I. r ≥ ρ−1
ρ . We will show that the point with dual objective value D1(r, ρ, s) satisfies

inequality (5.3), i.e.,

r +
s

s+ 1
(1− r)− 9

10

ρ+ r

ρ+ 1
≥ 0. (5.4)

Since s ≥ 1, we have that the left hand side of inequality (5.4) is at least

1 + r

2
− 9

10

ρ+ r

ρ+ 1
=

1

2
− 9ρ

10(ρ+ 1)
+ r

(
1

2
− 9

10(ρ+ 1)

)
.

Since ρ ≥ 1, we have that 1
2 −

9
10(ρ+1) ≥ 0, and we can lower-bound the above quantity using

the assumption r ≥ ρ−1
ρ , as follows:

1 + r

2
− 9

10

ρ+ r

ρ+ 1
≥ 1

2
− 9ρ

10(ρ+ 1)
+

ρ− 1

ρ

(
1

2
− 9

10(ρ+ 1)

)
=

(ρ− 2)2

10ρ(ρ+ 1)
≥ 0,

and inequality (5.4) follows.

Case II. r < ρ−1
ρ . We will now show that the point with dual objective value D2(r, ρ, s)

satisfies inequality (5.3), i.e.,

r +
3s2

(s+ 1)(3s+ 1)
(1− r) +

ρ(1− r)− r

(s+ 1)(3s+ 1)
− 9

10

ρ+ r

ρ+ 1
≥ 0. (5.5)

Let us denote by F the left hand side of inequality (5.5). With simple calculations, we obtain

F =
10ρ2 − (−3s2 + 36s− 1)ρ+ 30s2

10(3s+ 1)(s+ 1)(ρ+ 1)
− r · 10ρ

2 − (40s− 10)ρ+ 27s2 − 4s+ 9

10(3s+ 1)(s+ 1)(ρ+ 1)
. (5.6)

Observe that the numerator of the left fraction in (5.6) is a quadratic function with respect to ρ

with positive coefficient in the leading term. Its discriminant is−1191s4−216s3+1296s2−72s+7
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which is clearly negative for every integer s ≥ 1. Hence, the numerator of the left fraction is

always positive. Now, if the numerator of the rightmost fraction is negative, then inequality

(5.5) is obviously satisfied. Otherwise, using the assumption r < ρ−1
ρ , we have

F ≥ 10ρ2 − (−3s2 + 36s− 1)ρ+ 30s2

10(3s+ 1)(s+ 1)(ρ+ 1)
− ρ− 1

ρ
· 10ρ

2 − (40s− 10)ρ+ 27s2 − 4s+ 9

10(3s+ 1)(s+ 1)(ρ+ 1)

=
(3s2 + 4s+ 1)ρ2 + (3s2 − 36s+ 1)ρ+ 27s2 − 4s+ 9

10ρ(3s+ 1)(s+ 1)(ρ+ 1)
.

Now, the numerator of the last fraction is again a quadratic function in terms of ρwith positive

coefficient in the leading term and discriminant equal to

−315s4 − 600s3 + 1150s2 − 200s− 35 = (−315s3 − 915s2 + 235s− 35)(s− 1) ≤ 0,

for every integer s ≥ 1. Hence, F ≥ 0 and the proof is complete.

The next statement summarizes the discussion above.

Theorem 5.9. The greedy algorithm always yields a 9/10–approximation of the optimal partition value

in the uniform case.

Our analysis is tight as our next counter-example suggests.

Theorem 5.10. There exists an instance of the uniform asymmetric binary matrix partition problem for

which a greedy algorithm computes a partition scheme with value (at most) 9/10 of the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem that consists

of the matrix

A =


1 0 0 0
0 1 0 0
1 1 0 0
1 1 0 0


with pi = 1/4 for i = 1, 2, 3, 4. The optimal partition value is obtained by covering the one-

columns in the first two rows and then bundling each of the two zero-columns with a pair of

one-columns in the third and fourth row, respectively. This yields a partition value of 5/6. A

greedy algorithm may select to cover the one-columns using the 1-value entries A31 and A42.

This is possible since the greedy algorithm has no particular criterion for breaking ties when

selecting the full cover. Given this full cover, the greedy completion procedure will assign each

of the two zero-columns with only one one-column. The partition value is then 3/4, i.e., 9/10

times the optimal partition value.
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5.5 Asymmetric binary matrix partition as welfare maximization

We now consider the more general non-uniform case. Interestingly, property P1 of Lemma 5.1

does not hold any more as the following statement shows.

Lemma 5.11. For every ϵ > 0, there exists an instance of the asymmetric binary matrix partition

problem in which any partition scheme containing a full cover of the columns in A+ yields a partition

value that is at most 8/9 + ϵ times the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem consisting of

the matrix

A =


1 0 0 0
0 1 0 0
0 1 0 0
1 0 1 0


with column probabilities pj = 1

β+3 for j = 1, 2, 3 and p4 = β
β+3 for β > 2. We will first prove

an upper bound on the partition value of any partition scheme containing a full cover. Then,

we will present a partition scheme without a full cover, which has a strictly higher partition

value. The desired ratio of 8/9 + ϵwill then follow by setting the parameter β appropriately.

Observe that there are four partition schemes containing a full cover (depending on the

rows that contain the column-covering bundle of the first two columns). In each of them, there

are two 1-value entries in different rows that are not included in the full cover, and only one

of them can be bundled together with the zero-column. By making calculations, we obtain that

the partition value in these cases is 4β+3
(β+1)(β+3) . Here is one of these partition schemes:

B1 {1}, {2, 3, 4}
B2 {2}, {1, 3, 4}
B3 {1, 3}, {2, 4}
B4 {1}, {3}, {2, 4}

AB

1 0 0 0
0 1 0 0
0 1

β+1 0 1
β+1

1 0 1 0

pj ·maxiAB
ij

1
β+3

1
β+3

1
β+3

β
(β+1)(β+3)

In contrast, consider the partition scheme B′ in which the 1-value entries A11 and A22 form

column-covering bundles in rows 1 and 2, the entries A32 and A33 are bundled together in row

3 and the entries A41, A43, and A44 are bundled together in row 4. As it can be seen from the

tables below (recall that β > 2), the partition value now becomes 4.5β+5
(β+2)(β+3) .

Clearly, the ratio of the two partition values approaches 8/9 from above as β tends to

infinity. Hence, the theorem follows by selecting β sufficiently large for any given ϵ > 0.

121



B′
1 {1}, {2, 3, 4}

B′
2 {2}, {1, 3, 4}

B′
3 {1, 4}, {2, 3}

B′
4 {2}, {1, 3, 4}

AB′

1 0 0 0
0 1 0 0
0 1/2 1/2 0
2

β+2 0 2
β+2

2
β+2

pj ·maxiAB′
ij

1
β+3

1
β+3

1
2(β+3)

2β
(β+2)(β+3)

Still, as the next statement indicates, the optimal partition scheme has some structure which

we will exploit later.

Lemma 5.12. Consider an instance of the asymmetric binary matrix partition problem consisting of a

matrix A and a probability distribution p over its columns. There is an optimal partition scheme B that

satisfies properties P2, P3, P4 (from Lemma 5.1) as well as the new property P5:

P2. For each row i, Bi has at most one bundle containing all columns of A+
i that are not included in

column-covering bundles in row i (if any). This bundle can be either all-one (if it does not contain

zero-columns) or the unique mixed bundle of row i.

P3. For each zero-column j, there exists at most one row i such that j is contained in the mixed bundle

of Bi (and j is contained in the all-zero bundles of the remaining rows).

P4. For each row i, the zero-columns that are not contained in the mixed bundle ofBi form an all-zero

bundle.

P5. Given any column j, denote by Hj = argmaxiAB
ij the set of rows through which column j

contributes to the partition value vB(A, p). For every i ∈ Hj such that Aij = 1, the bundle of

partition Bi that contains column j is not mixed.

Proof. We first focus on property P5. Consider an optimal partition scheme B that does not

satisfy property P5, and let j∗ be a column such that Ai∗j∗ = 1 for some i∗ ∈ Hj∗ . Furthermore,

assume that the mixed bundle b of partition Bi∗ that contains column j∗, also contains the

columns of a (possibly empty) set b1 ⊆ A+
i∗ \ {j∗} and the columns of a non-empty set b0 ⊆ A0

i∗ .

Let p+ ≥ 0 and p0 > 0 be the sum of probabilities of the columns in b1 and b0, respectively.

Let B′ be the partition scheme that is obtained from B when splitting bundle b into two

bundles {j∗} and b \ {j∗}; we will show that B′ must be optimal as well. Observe that AB
i∗j =

pj∗+p+

pj∗+p++p0
and AB′

i∗j = p+

p++p0
for every j ∈ b \ {j∗}; hence, AB

i∗j > AB′
i∗j . Since, this is the only

difference betweenB andB′, the difference maxiAB
ij−maxiAB′

ij is at mostAB
i∗j−AB′

i∗j for every
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j ∈ b \ {j∗}, and for j∗, maxiAB
ij∗ −maxiAB′

ij∗ = AB
i∗j∗ −AB′

i∗j∗ =
pj∗+p+

pj∗+p++p0
− 1. Hence, we have

vB(A, p)− vB
′
(A, p) =

∑
j∈[m]

pj ·max
i

AB
ij −

∑
j∈[m]

pj ·max
i

AB′
ij

=
∑
j∈b

pj

(
max

i
AB

ij −max
i

AB′
ij

)
≤
∑
j∈b

pj

(
AB

i∗j −AB′
i∗j

)
= pj∗

(
pj∗ + p+

pj∗ + p+ + p0
− 1

)
+

∑
j∈b\{j∗}

pj

(
pj∗ + p+

pj∗ + p+ + p0
− p+

p+ + p0

)

=
pj∗ + p+

pj∗ + p+ + p0

pj∗ +
∑

j∈b\{j∗}

pj

− pj∗ −
p+

p+ + p0

∑
j∈b\{j∗}

pj

= 0,

where the second last equality is just a rearrangement of terms and the last one follows from

the fact that
∑

j∈b\{j∗} pj = p+ + p0. Hence, the partition value does not decrease. By repeating

this argument, wewill reach an optimal partition scheme that satisfies property P5. Then, using

arguments similar to the ones used in the proof of Alon et al. [2013] for Lemma 5.11 is we can

prove that the resulting partition scheme can be transformed in such a way so that it satisfies

properties P2, P3, and P4.

What Lemma 5.12 says is that the contribution of column j ∈ A+ to the partition value

comes from a row i such that either j ∈ A+
i and {j} forms a column-covering bundle (and,

hence, its smooth value is 1) or j ∈ A0
i and j belongs to the mixed bundle of row i (and the

smooth value of its entries is strictly smaller than 1). A non-zero contribution of a column j ∈ A0

to the partition value always comes from a row i where j belongs to the mixed bundle. A

column j ∈ A0 can have a contribution of zero to the optimal partition value when no mixed

bundle exists2. Hence, the problem of computing the partition scheme of optimal partition

value is equivalent to deciding the row from which each column contributes to the partition

value, either as a one-column that is part of a (not necessarily full) cover or as a zero-column

that is part of a mixed bundle.

Let B be a partition scheme and S be a set of columns whose contribution to the partition

value of B comes from row i (i.e., i is a row that maximizes the smooth value AB
ij for each

1Invoking Lemma 5.2 in order to prove property P2 is crucial here; verifying properties P3 and P4 is much easier.
2As an example of such an extreme case, consider an instancewith a k×(k+1)matrix that consists of the identity

k × k matrix and an extra zero-column, and has a uniform probability distribution over the columns. The optimal
partition scheme contains a full cover and all-zero bundles only, and the zero-column has no contribution to the
partition value.
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column j in S). Denoting the sum of these contributions by Ri(S) =
∑

j∈S pj ·AB
ij , we can

equivalently express Ri(S) as

Ri(S) =
∑

j∈S∩A+
i

pj +

∑
j∈S∩A0

i
pj
∑

j∈A+
i \S pj∑

j∈S∩A0
i
pj +

∑
j∈A+

i \S pj
.

The first sum represents the contribution of columns of S ∩A+
i to the partition value (through

column-covering bundles) while the second sum represents the contribution of the columns in

S∩A0
i which are bundled together with all 1-value entries inA+

i \S in the mixed bundle of row

i. Then, the partition scheme B can be thought of as a collection of disjoint sets Si (with one set

per row) such that Si contains those columns whose entries achieve their maximum smooth

value in row i. Hence, the partition value of B is vB(A, p) =
∑

i∈[n]Ri(Si) and the problem is

essentially equivalent to welfare maximization where the rows act as the agents who will be

allocated bundles of items (corresponding to columns).

Lemma 5.13. For every row i, the function Ri is non-decreasing and submodular.

Proof. We will show that the function Ri is non-decreasing and has decreasing marginal

utilities, i.e.,

• (monotonicity) for every set S and item x ̸∈ S, it holds that Ri(S) ≤ Ri(S ∪ {x});

• (decreasing marginal utilities) for every pair of sets S, T such that S ⊆ T and every item

x ̸∈ T , it holds that Ri(S ∪ {x})−Ri(S) ≥ Ri(T ∪ {x})−Ri(T ).

In order to simplify notation, let us define the functions α(S) =
∑

j∈S∩A+
i
pj , β(S) =∑

j∈S∩A0
i
pj and γ(S) =

∑
j∈A+

i \S pj . We can rewrite the function Ri as

Ri(S) = α(S) +
β(S) · γ(S)
β(S) + γ(S)

.

Let S, T ⊆ [m] be two sets of columns such that S ⊆ T and let x be a column that does not

belong to set T . We distinguish between two cases depending on x. If x ∈ A+
i , observe that

• α(S ∪ {x}) = α(S) + px and α(T ∪ {x}) = α(T ) + px;

• β(S ∪ {x}) = β(S) and β(T ∪ {x}) = β(T );

• γ(S ∪ {x}) = γ(S)− px and γ(T ∪ {x}) = γ(T )− px.
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Using the definition of function Ri, we have

Ri(S ∪ {x})−Ri(S) = px + β(S)

(
γ(S)− px

β(S) + γ(S)− px
− γ(S)

β(S) + γ(S)

)
= px −

pxβ(S)
2

(β(S) + γ(S))(β(S) + γ(S)− px)

≥ px −
pxβ(S)

2

(β(S) + γ(T ))(β(S) + γ(T )− px)

≥ px −
pxβ(T )

2

(β(T ) + γ(T ))(β(T ) + γ(T )− px)

= Ri(T ∪ {x})−Ri(T ).

The first inequality follows since γ is non-increasing and S ⊆ T and the second inequality

follows by applying twice (with a = γ(T ) and a = γ(T ) − px, respectively) the fact that the

function f(z) = z
z+a for a ≥ 0 is non-decreasing.

If instead x ∈ A0
i , observe that

• α(S ∪ {x}) = α(S) and α(T ∪ {x}) = α(T );

• β(S ∪ {x}) = β(S) + px and β(T ∪ {x}) = β(T ) + px;

• γ(S ∪ {x}) = γ(S) and γ(T ∪ {x}) = γ(T ).

Hence, we have

Ri(S ∪ {x})−Ri(S) = γ(S)

(
β(S) + px

β(S) + γ(S) + px
− β(S)

β(S) + γ(S)

)
=

pxγ(S)
2

(β(S) + γ(S))(β(S) + γ(S) + px)

≥ pxγ(S)
2

(β(T ) + γ(S))(β(T ) + γ(S) + px)

≥ pxγ(T )
2

(β(T ) + γ(T ))(β(T ) + γ(T ) + px)

= Ri(T ∪ {x})−Ri(T ).

Again, the first inequality follows since β is clearly non-decreasing and S ⊆ T and the second

inequality follows by applying twice (with a = β(T ) and a = β(T ) + px, respectively) the fact

that the function f(z) = z
z+a with a ≥ 0 is non-decreasing.

We have completed the proof thatRi has decreasing marginal utilities. In order to establish

monotonicity, it suffices to observe that the quantity at the right-hand side of the second

equality in each of the above two derivations starting with Ri(S ∪ {x}) − Ri(S) is non-

negative.
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Lehmann et al. [2006] presented a simple greedy algorithm that uses value queries and

yields a 1/2–approximation of the optimal welfare for the submodular welfare maximization

problem. This algorithm considers the items one by one in arbitrary order and assigns item j

to an agent that maximizes the marginal valuation (the additional value from the allocation

of item j). In our setting, this algorithm considers the one-columns first and the zero-columns

afterwards. Whenever considering a one-column j, a column-covering bundle {j} is formed

at an arbitrary row i with j ∈ A+
i (such a decision definitely maximizes the increase in the

partition value). Once all one-columns have been processed, the remaining 1-value entries

(that did not form column-covering bundles) in each row are grouped into a bundle. All these

bundles are available to host zero-columns (that will be processed next) and evolve into mixed

ones. Afterwards, whenever considering a zero-column, the algorithm includes it to a mixed

bundle that maximizes the increase in the partition value. Using the terminology we used in

Section 5.4, the algorithm essentially starts with an arbitrary cover of the one-columns and then

it runs the greedy completion procedure.

Again, we use the term greedy algorithm to refer to the whole family of algorithms that are

defined by different implementations of the several missing details in the above description,

such as the order in which the one-columns are processed, the particular way the column-

covering bundles are selected, the order in which the zero-columns are processed, and the way

ties are broken between different mixed bundles to which a zero-column can be added. Our

analysis below holds for any member of this family.

Theorem 5.14. The greedy algorithm for the asymmetric binary matrix partition problem has

approximation ratio at least 1/2. This bound is tight.

Proof. The lower bound holds by the equivalence of the greedy algorithm with the algorithm

studied by Lehmann et al. [2006]. Below, we prove the upper bound. In particular, we show

that for every ϵ > 0, there exists an instance of the problem in which the greedy algorithm

obtains a partition scheme whose value is at most 1/2 + ϵ of the optimal one.

Let k > 0 be a positive integer and α significantly higher than k. Consider the instance of

the asymmetric binary matrix partition that consists of the following (k + 1)× (k + 1)matrix

A =


1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
1 1 · · · 1 0


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where pj = 1
k+α for j ∈ [k] and pk+1 = α

k+α . So, the first k columns and rows of A form an

identity matrix, the last column has only 0-value entries and the last row consists of k 1-value

entries in the first k columns. In order to lower-bound the optimal partition value, consider the

partition scheme consisting of a full cover that contains the 1-value entries (i, i) for i ≤ k, and a

bundle containing the whole (k + 1)-th row. The optimal partition value is lower-bounded by

the value of this partition scheme. By simple calculations, we obtain

OPT ≥ k2 + 2αk

(k + α)2
.

On the other hand, the greedy algorithm may select first to cover the k one-columns using the

1-value entries (k + 1, j) for j ≤ k and, then, bundle the zero-column together with only one

1-value entry in some of the first k rows. The partition value of the greedy algorithm is then

GREEDY =
k + (k + 1)α

(k + α)(α+ 1)
.

Hence, the ratio between the two partition values is

GREEDY
OPT

≤ (k + α)(k + (k + 1)α)

(k2 + 2αk)(α+ 1)
.

Pick an arbitrarily small δ > 0; then, there exist a value for α (significantly higher than k) so

that the above ratio satisfies GREEDYOPT ≤ k+1
2k +δ. The theorem follows by picking k sufficiently

large and δ sufficiently small.

We can use themore sophisticated smooth greedy algorithm of Vondrák [2008], which uses

value queries to obtain the following.

Corollary 5.15. There exists a (1 − 1/e)–approximation algorithm for the asymmetric binary matrix

partition problem.

One might hope that due to the particular form of the functions Ri, better approximation

guarantees could be possible using the (1 − 1/e + ϵ)–approximation algorithm of Feige and

Vondrák [2010] which requires that demand queries of the form

given agent i and a price qj for every item j ∈ [m], select the bundle S that

maximizes the difference Ri(S)−
∑

j∈S qj

can be answered in polynomial time. Unfortunately, in our setting, this is not the case in spite

of the very specific form of the function Ri.
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Lemma 5.16. Answering demand queries associated with the asymmetric binary matrix partition

problem are NP-hard.

Proof. We use reduction from Partition to show that the following (very restricted) decision

version DQ of a demand query is NP-hard.

DQ: Given a 1×m binarymatrixA, probabilities pj and prices qj for column j ∈ [m],

is there a set S ⊆ [m] such that Ri(S)−
∑

j∈S qj ≥ 5/18?

We start from an instance of Partition consisting of a collection C of t items of integer size

w1, w2, ..., wt and the question of whether there exists a subset Y ⊆ C of items such that∑
j∈Y

wj =
∑

j∈C\Y

wj =
1

2

∑
j∈C

wj .

Define W =
∑

j∈C wj . Given this instance, we construct an instance of DQ with m = t + 1

as follows. The binary matrix A consists of a single row that contains t 1-value entries with

associated probabilities w1
2W , w2

2W , ..., wt
2W and a 0-value entry with associated probability 1/2. Set

the prices as qj =
5wj

18W for j = 1, ..., t and qt+1 = 0.

By the definition of the function Ri, given a set S ⊆ [t+ 1], we have

Ri(S)−
∑
j∈S

qj =
1

2W

∑
j∈S\{t+1}

wj +

1
4W

∑
j∈[t]\S wj

1
2 + 1

2W

∑
j∈[t]\S wj

− 5

18W

∑
j∈S\{t+1}

wj

=
2

9
− 2

9W

∑
j∈[t]\S

wj +

∑
j∈[t]\S wj

2W + 2
∑

j∈[t]\S wj
.

Now, consider the function f(z) = 2
9 −

2z
9W + z

2W+2z ; the equality above implies that

Ri(S)−
∑
j∈S

qj = f

 ∑
j∈[t]\S

wj

 .

By nullifying the derivative of function f , we obtain that it has a uniquemaximum at z = W/2.

Since f(W/2) = 5/18, the instance of DQ is equivalent to asking whether there exists a set S

such that
∑

j∈[t]\S wj = W/2, which is equivalent to asking whether there exists a set of items

of total sizeW/2 in the instance of Partition.

5.6 Conclusion

In this chapter, we studied the asymmetric matrix partition problem that is related to revenue

maximization in take-it-or-leave-it sales, and focused on its binary version. In short, an instance
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of the problem consists of a matrix of non-negative real values, and a probability distribution

over its columns that can either be uniform or non-uniform. The goal is to find a partition of

every row of the matrix into asymmetric bundles so that the expected value of each column is

maximized.

For the case where the probability distribution over the matrix columns is uniform, we

designed a simple greedy 9/10–approximation algorithm, whose analysis was heavily based

on dual fitting techniques. For the case where the probability distribution is non-uniform, we

showed that there exists a (1− 1/e)–approximation algorithm, by reducing the problem to the

problemof submodularwelfaremaximization. Both of these results significantly improve upon

the corresponding results presented in the previous work of Alon et al. [2013].
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Chapter 6

Conclusions and open problems

In the previous four chapters of this thesis, we focused on the presentation of the results that we

were able to obtain for the different problems that we studied. In particular, we designed and

analyzed simple resource allocation mechanisms for budget-constrained users in Chapter 2,

we bounded the price of anarchy and stability of compromising opinion formation games in

Chapter 3, we designed truthful mechanisms for ownership transfer using expert advice in

Chapter 4, and, finally, we designed efficient approximation algorithms for the asymmetric

binary matrix partition problem in Chapter 5. However, in each of these problems, our work

inevitably leaves open several interesting and important questions as well as reveals new ones.

In this concluding chapter of the thesis, we discuss several of these possible directions for future

research.

6.1 Resource allocation and auctions for budget-constrained users

Even though we have revealed an almost complete picture on the liquid price of anarchy of

resource allocation mechanisms in Chapter 2, the gap between the lower bound of 2 − 1/n

for all mechanisms and the bound of 2 that the Kelly mechanism is able to achieve leaves the

following interesting open question:

Open question 6.1. Is the 2− 1/n bound achievable, preferably by a simple mechanism?

In particular, is there a mechanismwith proportional allocation function and appropriate non-

pay-your-signal payments that achieves this LPoA bound? This question seems technically

challenging even for the case of two players only, where our best 2-player mechanism E2-SR

(presented in Section 2.7.2) can achieve an LPoA bound of approximately 1.53, while the lower

bound is 1.5.
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Regarding the liquid price of anarchy over more general equilibrium concepts (like mixed

and correlated equilibria) or settingswith incomplete information (and Bayes-Nash equilibria),

our results lead to the following natural open question:

Open question 6.2. Is the Kelly mechanism still optimal within low-order terms for general

equilibrium concepts?

Caragiannis and Voudouris [2016] showed that the set of mixed Nash equilibria induced by

the Kelly mechanism coincides with that of pure Nash equilibria, even when the users have

budget constraints. Therefore, it turns out that Kelly is indeed optimal within low-order terms

for mixed Nash equilibria. However, for even more general equilibrium concepts, we are

far from answering this question. The papers by Caragiannis and Voudouris [2016] and by

Christodoulou et al. [2016b] present such LPoA bounds for Kelly over coarse-correlated and

pure Bayes-Nash equilibria, but these are not known to be tight. We conjecture that the proof

of tight LPoA bounds over more general equilibrium concepts for any resource allocation

mechanism should exploit the structure of worst-case games and equilibria as we did in

Chapter 2 for pureNash equilibria. Unfortunately, extending our characterization from Section

2.5 to more general equilibrium concepts seems elusive at this point.

In Section 2.8.1, we proved a slightly weaker lower bound of 4/3 on the liquid price of

anarchy of any budget-aware resource allocation mechanism. This leaves open the possibility

of finding such a mechanism that could beat the bound of 2− 1/n.

Open question 6.3. Which is the best budget-aware resource allocation mechanism?

Unfortunately, our characterization of worst-case games and equilibria from Section 2.5 does

not seem to extend to the case of known budgets. Therefore, in order to be able to prove

tight bounds and pinpoint the best budget-aware mechanism, we need to obtain a different

characterization, which is an extremely challenging and technically non-trivial task.

Finally, in general, we believe that the liquidwelfare is an appropriate efficiency benchmark

for auctions with budget-constrained players. The recent paper by Azar et al. [2017] studies

the LPoA of simultaneous first-price auctions over Bayes-Nash equilibria, while the paper by

Voudouris [2018] focuses on the LPoA of position mechanisms over pure Nash equilibria.

Obtaining similar results for other auction formats is certainly an important future research

direction; see the recent survey of Roughgarden et al. [2017] on the price of anarchy of auction

mechanisms.
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Open question 6.4. Which is the best auction mechanism for budget-constrained players with

respect to the liquid welfare efficiency benchmark?

Needless to say, we do not expect that the liquid welfare is unique as a measure of efficiency

in settings with budgets. Defining alternative efficiency benchmarks and studying the price of

anarchywith respect to themwould shed extra light to the strengths andweaknesses of auction

mechanisms.

6.2 Compromising opinion formation

In Chapter 3, we introduced the class of compromising opinion formation (k-COF) games by

enriching that of co-evolutionary opinion games with a cost function that urges players to

essentiallymeet halfway. Our findings indicate that the quality of their equilibria grows linearly

with the neighborhood size k, but there exists a gap between our lower and upper bounds

for k ≥ 2; closing this gap seems to be a challenging technical task and may require different

analysis techniques.

Open question 6.5. What is the tight bound on the price of anarchy and stability of k-COF

games for k ≥ 2?

Furthermore, for 1-COF games, due to the tight bound of 3 for pure equilibria and the lower

bound of 6 for mixed equilibria, we know the equality of mixed equilibria is strictly worse than

that of pure ones. However, we were not able to prove any upper bounds on their price of

anarchy.

Open question 6.6. Is the price of anarchy over mixed equilibria still linear?

Another natural question is about the complexity of pure equilibria in k-COF games. For

k = 1, we managed to show that computing the best and worst pure equilibria can be done by

searching for paths of minimum and maximum total weight in directed acyclic graphs where

the node correspond to partial segments of the game.

Open question 6.7. Can we efficiently compute pure Nash equilibria for k ≥ 2?

Driven by our positive results for 1-COF games, we conjecture that there exists a polynomial

time algorithm for computing equilibria in more general k-COF games, but finding such an

algorithm remains elusive at this point. Similarly, one could also focus on the complexity of

computing optimal opinion vectors, even for k = 1.
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Finally, our modeling assumption that the number of neighbors is equal for all players is

rather restrictive. It would be interesting to investigate whether our results (qualitative and

algorithmic) can be extended to more general scenarios.

Open question 6.8. Do our results extend to compromising opinion formation games with

players of different neighborhood sizes?

One possible such generalization is to combine our approach with the Hegselmann-Krause

model so that the neighborhood of each player i consists solely the players j ̸= iwith opinions

that are sufficiently close to the i’s belief.

6.3 Ownership transfer

In Chapter 4, we presented a series of positive and negative results for a simple mechanism

design model with and without monetary transfers, which we believe that captures the main

challenges in the implementation of ownership transfer. Still, closing the gap between the

approximation ratio of 5/4 of the template mechanism R (see Section 4.7) and our general

unconditional lower bound of approximately 1.14 for any truthful mechanism (see Section 4.8)

is an important and definitely non-trivial challenge.

Open question 6.9. Which is the best possible achievable approximation ratio?

A possible direction towards answering the above question could be to consider extensions of

the template mechanisms by exploiting a few more bits of information about the preferences

of the expert. One could also consider the alternative of using bid-independent mechanisms

embedded with extra bits of information that could be distilled by the values reported by the

bidders.

Besides the aforementioned concrete open problem that is directly related to our results

in this thesis, there are many natural extensions of the model that are worth studying. For

example, we have weighed equally the contribution of the expert and the agents to the social

welfare. We can generalize the definition of the welfare by introducing a factor of α > 0, by

which the contribution of the expert will be multiplied.

Open question 6.10. Canwe design near-optimal truthful mechanisms for the different values

of the parameter α?

In cases where the parameter α is very large or very small, we expect that bid-independent and

expert-independent mechanisms will be almost optimal, respectively. However, we suspect
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that there are values of the parameter α (close to 1) that make the mechanism design problem

even more interesting.

Another extension could be to consider a different optimization objective; for example, by

mixing the welfare of the expert with the revenue that can be extracted by the bidders.

Open question 6.11. Can we design truthful mechanisms that maximize the sum of expert

welfare and revenue?

We remark that in order for the revenue to be (part of) a meaningful objective, one would have

to restrict attention to individually rationalmechanisms that guarantee non-negative utility to the

agents for participating. This is an important property, since otherwise a truthful mechanism

could simply ignore their bids and charge them the maximum possible amount. In fact, the

related literature on revenue-maximization focuses on mechanisms which are individually

rational for this reason. However, in our setting, it is not hard to see that bid-independent,

individually rationalmechanismsmust always extract zero revenue. It is alsowell-documented

that revenue maximization is a less meaningful objective in the absence of prior knowledge

of the values of the agents [Hartline, 2013], and it is commonly assumed that these values are

drawn from some knowndistributions [Myerson, 1981, Nisan et al., 2007]. Therefore, designing

efficient truthful mechanisms for such an optimization objective requires radically different

ideas, or perhaps even the migration to a Bayesian setting.

Our model of one expert and two competing bidders can be thought of as the simplest

possible non-trivial ownership transfer scenario. There are many important generalizations

that one could consider for future research. Indicatively, these could include larger populations

of experts and agents, more than one assets to be transfered with combinatorial constraints

governing their acquisition, or even dynamic expert preferences that depend on the bidding

information. All of these lead to the following abstract open question:

Open question 6.12. Can we design near-optimal truthful mechanisms for generalizations of

ownership transfer?

Finally, we believe that the combination of mechanism design with andwithout money can

be exploited in different contexts as well, especially in settings where the agents are partitioned

into groups depending on whether they value money or not. Our setting of ownership transfer

is such a setting, but it is definitely not unique in its kind.
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6.4 Asymmetric matrix partition

In Chapter 5, we focused on the binary version of the asymmetric matrix partition problem

and presented improved approximation algorithms for uniform and non-uniform probability

distributions, compared to the previous work of Alon et al. [2013]. Designing algorithms with

even better approximation guarantees or proving stronger inapproximability results for this

version of this problem is a first obvious open problem.

Open question 6.13. What are the limits of approximation for the asymmetric (binary) matrix

partition problem?

Recall (see Section 1.4) that the motivation behind the definition of the asymmetric matrix

partition problem comes from revenuemaximization in take-it-or-leave-it sales, where the goal

is to exploit possible asymmetries in the information of the seller and of the potential buyers.

Admittedly, in the (uniform) binary case of the problem, the fact that the greedy partition

schemes contain column-covering bundlesmakes it possible for a buyer to distinguish between

cases in which she is actually offered an item that she values as 1 (a singleton bundle with

smooth value of 1) or 0 (a mixed bundle). This is clearly a drawback and asymmetric binary

matrix partition should not be used to model such simple take-it-or-leave-it sales. One possible

remedy could be to lower-bound the size of any bundle with non-zero value or require some

symmetry among the bundles that contain any given zero-column, so that no information about

the item selected by nature is revealed to the buyer by the seller.

Open question 6.14. Given additional constraints that guarantee no information revelation,

can we design near-optimal approximation algorithms?

Still, we believe that asymmetric binary matrix partition is important as an algorithmically

challenging problem and can provide insights to efficient solutions for revenue maximization.

In this direction, the above issue does not seem to be as severe in the general asymmetric

matrix partition. This is justified by the assumption that buyers do not know each other and

information about the particular item that is selected to be sold is not as easy to be inferred.
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Appendix A

Extended abstract in Greek

Σχεδιασμός και ανάλυση αλγορίθμων
για μη συνεργατικά περιβάλλοντα

Αλέξανδρος Ανδρέας Βουδούρης

Τις τελευταίες δύο δεκαετίες, η ταχύτατη και συνεχώς αυξανόμενη ανάπτυξη του Διαδικτύου

και των κοινωνικών δικτυών, έχει οδηγήσει στην υλοποίηση μη συνεργατικών περιβαλλόντων,

όπου πολλαπλές εγωκεντρικές οντότητες ανταγωνίζονται η μία την άλλη. Για παράδειγμα, οι

οντότητες μπορεί να είναι χρήστες ενός τηλεπικοινωνιακού καναλιού που ανταγωνίζονται για

το περιορισμένο διαθέσιμο εύρος ζώνης, διαφημιστές που ανταγωνίζονται για τον διαθέσιμο

χώρο διαφήμισης σε ιστοσελίδες αποτελεσμάτων αναζήτησης, εργολάβοι που ανταγωνίζονται

για συμμετοχή σε δημόσια έργα, ή ακόμη και απλοί άνθρωποι οι οποίοι συζητάνε με τα άτομα

του κοινωνικού τους περίγυρου για πολιτικά θέματα εκφράζοντας απόψεις. Σε όλα αυτά τα

σενάρια, οι οντότητες είναι συνήθως εγωκεντρικές και κάθε μία από αυτές έχει ως σκοπό το

να επιλέξει την καλύτερη δυνατή στρατηγική για να βελτιστοποιήσει τους προσωπικούς της

στόχους, οι οποίοι δεν επηρεάζονται μόνο από την υποκείμενη δομή του περιβάλλοντος, αλλά

και από τις άλλες οντότητες (και τις στρατηγικές που αυτές επιλέγουν).

Υπάρχουν πολλές σημαντικές υπολογιστικές ερωτήσεις που αφορούν την ευστάθεια και την

απόδοση των συστημάτων που αναδύονται σε μη συνεργατικά περιβάλλοντα. Ποια είναι η

ποιότητα (τόσο καλύτερης όσο και χειρότερης περίπτωσης) των καταστάσεων ισορροπίας που

καταλήγουν τα στρατηγικά παιχνίδια (τα οποία ανακύπτουν από τη στρατηγική συμπεριφορά

των οντοτήτων, οι οποίες λειτουργούν ως παίκτες); Μπορούμε να σχεδιάσουμε βελτιωμένους

μηχανισμούς οι οποίοι επιπλέον ναπαρέχουν και τα κατάλληλα κίνητρα στους παίκτες ώστε να
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αναφέρουν πάντα την αλήθεια για τις προτιμήσεις τους; Σε αυτήν την Διατριβή, απαντάμε σε

τέτοιες ερωτήσεις για τέσσερα προβλήματα που προκύπτουν σε μη συνεργατικά περιβάλλοντα

κατανομής διαιρέσιμων πόρων, διαμόρφωσης απόψεων, μεταφοράς ιδιοκτησίας, και μεγιστο-

ποίησης εσόδων σε συνδυαστικές πωλήσεις. Στη συνέχεια, δίνουμε μια συνοπτική περιγραφή

αυτών των προβλημάτων, καθώς και των αποτελεσμάτων μας.

A.1 Κατανομή πόρων με περιορισμούς προϋπολογισμού

Η κατανομή πόρων είναι ένα από τα βασικά προβλήματα που προκύπτουν αναπόφευκτα σε

όλα τα υπολογιστικά συστήματα, σε διάφορες μορφές. Μάλιστα, τις περισσότερες φορές ο σχε-

διασμός αποδοτικών λύσεων για κατανομή πόρων δημιουργεί μη-τετριμμένες αλγοριθμικές

προκλήσεις. Ως εκ τούτου, η σχετική αλγοριθμική ερευνητική κοινότητα έχει απασχοληθεί με

την σχεδίαση και ανάλυση αποδοτικών αλγορίθμων για προβλήματα κατανομής πόρων εδώ

και δεκαετίες. Η πρόσφατη ανάπτυξη κατανεμημένων συστημάτων μεγάλης κλίμακας με μη

συνεργατικούς χρήστες οι οποίοι ανταγωνίζονται για πρόσβαση σε περιορισμένους πόρους,

έχει οδηγήσει στην ανάλυση σχετικών προβλημάτων κατανομής πόρων με χρήση εννοιών και

εργαλείων της Θεωρίας Παιγνίων.

Μελετάμε μια συγκεκριμένη κλάση μηχανισμών κατανομής πόρων οι οποίοι μοιράζουν έναν

διαιρέσιμο πόρο (όπως το εύρος ζώνης ενός τηλεπικοινωνιακού καναλιού, ο υπολογιστικός

χρόνος μιας CPU, ο αποθηκευτικός χώρος ενός cloud κτλ.) στους χρήστες ως εξής. Κάθε χρήστης

υποβάλλει ένα βαθμωτό σήμα (έναν μη-αρνητικό πραγματικό αριθμό). Δεδομένων αυτών των

σημάτων, ο μηχανισμός αποφασίζει το μέρος του πόρου που θα πάρει κάθε χρήστης, καθώς και

το ποσό των χρημάτων που θα πρέπει να πληρώσει για αυτό. Ένα κλασικό παράδειγμα είναι

ο αναλογικός μηχανισμός που προτάθηκε από τον Kelly [1997] (δείτε επίσης την εργασία των

Kelly et al. [1998]), σύμφωνα με τον οποίο το μέρος του πόρου που παίρνει κάθε χρήστης είναι

ανάλογο του σήματος που υποβάλλει, ενώ το σήμα είναι η πληρωμή του.

Ακολουθώντας τις τυπικές υποθέσεις στη σχετική βιβλιογραφία, θεωρούμε ότι η αποτίμηση

κάθε χρήστη για τα διάφορα μέρη του πόρου υπολογίζεται μέσω μιας ιδιωτικής συνάρτησης

αποτίμησης. Ο παραπάνω ορισμός των μηχανισμών κατανομής πόρων επιτρέπει στους χρήστες

να συμπεριφερθούν στρατηγικά υπό την έννοια ότι το σήμα που επιλέγουν να υποβάλλουν

είναι τέτοιο ώστε η ωφέλεια τους (αποτίμηση για το μέρος του πόρου που παίρνουν μείον την

πληρωμή τους) μεγιστοποιείται. Φυσικά, αυτή η συμπεριφορά ορίζει ένα στρατηγικό παιχνίδι

μεταξύ των χρηστών, οι οποίοι δρουν ως παίκτες. Μετά τον ορισμό του μηχανισμού του Kelly,
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μια σειρά από εργασίες μελέτησαν την ύπαρξη και τη μοναδικότητα των αμιγών ισορροπιών

κατά Nash (καταστάσεις του παιχνιδού όπου το σήμα κάθε παίκτη μεγιστοποιεί την προσωπική

του ωφέλεια) των υποκείμενων στρατηγικών παιχνιδιών [Hajek and Gopalakrishnan, 2002, La

and Anantharam, 2000, Maheswaran and Basar, 2003] και ποσοτικοποίησαν την αποδοτικό-

τητα τους [Johari and Tsitsiklis, 2004] φράσσοντας το κόστος της αναρχίας [Koutsoupias and

Papadimitriou, 1999].

Πιο συγκεκριμένα, οι Johari and Tsitsiklis [2004] χρησιμοποίησαν ως μέτρο απόδοσης το

κοινωνικό όφελος (συνολική αποτίμηση των παικτών για τα μέρη του πόρου που παίρνουν) και

απέδειξαν ότι το κοινωνικό όφελος οποιασδήποτε ισορροπίας είναι τουλάχιστον 3/4 φορές το

βέλτιστο κοινωνικό όφελος. Αυτό μεταφράζεται σε έναφράγμα 4/3 για το κόστος της αναρχίας,

το οποίο είναι αυστηρό. Η εργασία των Johari and Tsitsiklis [2004] πυροδότησε μεταγενέστερη

έρευνα για άλλους μηχανισμούς κατανομής πόρων, οι οποίοι χρησιμοποιούν διαφορετικούς

κανόνες κατανομής και πληρωμών.

Μια πρώτη προφανή ερώτηση αφορούσε το αν είναι δυνατόν να αποδείξουμε βελτιωμένα

φράγματα για το κόστος της αναρχίας αλλάζοντας τον αναλογικό κανόνα κατανομής, αλλά

διατηρώντας τον απλό κανόνα πληρωμών σύμφωνα με τον οποίο κάθε χρήστης πληρώνει το

σήμα του (για ευκολία, θα αναφέρομαστε σε τέτοιου είδους μηχανισμού ως PYS). Οι Sanghavi

and Hajek [2004] απέδειξαν ότι κανένας PYS μηχανισμός δεν μπορεί να πετύχει κόστος της

αναρχίας καλύτερο του 8/7, σχεδίασαν μια συνάρτηση κατανομής η οποία πετυχαίνει αυτό

το φράγμα για την περίπτωση των δυο παικτών, και έδωσαν ισχυρές ενδείξεις ότι ένα λίγο

χειρότερο φράγμα ισχύει για αυθαίρετα πολλούς παίκτες. Ίσως ένα από τα πιο απρόσμενα

αποτελέσματα είναι το ότι υπάρχουν πλήρως αποδοτικοί μηχανισμοί με κόστος της αναρχίας

1. Αυτή η ανακάλυψη έγινε σε τρεις ανεξάρτητες εργασίες από τους Maheswaran and Basar

[2006], Yang and Hajek [2007], και Johari and Tsitsiklis [2009]. Ο μηχανισμός τωνMaheswaran

and Basar [2006] χρησιμοποιεί αναλογική κατανομή αλλά διαφορετικές πληρωμές, ενώ οι μη-

χανισμοί των Johari and Tsitsiklis [2009] και Yang and Hajek [2007] προσαρμόζουν το γνωστό

VCG υπόδειγμα στην περίπτωση βαθμωτών σημάτων και διαιρέσιμων πόρων (δείτε επίσης το

survey του Johari [2007] πάνω σε αυτά τα αποτελέσματα).

Εδώ, επικεντρωνόμαστε στο πιο ρεαλιστικό σενάριο όπου κάθε παίκτης έχει έναν ιδιωτικό

προϋπολογισμό ο οποίος περιορίζει το ποσό των χρημάτων που μπορεί να πληρώσει και, άρα,

περιορίζει και τον χώρο των πιθανών στρατηγικών του. Καθώς οι μηχανισμοί κατανομής πό-

ρων δεν έχουν άμεση πρόσβαση στους προϋπολογισμούς, το σύνολο των ισορροπιών μπορεί
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να αλλάξει δραστικά και το κοινωνικό τους όφελος ενδέχεται να είναι εξαιρετικά μικρό σε

σχέση με το βέλτιστο δυνατό, το οποίο δεν συσχετίζεται με τις στρατηγικές των παικτών, τις

πληρωμές τους, ή τους προϋπολογισμούς που μπορεί να έχουν. Ένα μέτρο απόδοσης το οποίο

είναι πιο κατάλληλο για αυτό το σενάριο είναι γνωστό ως ρευστό όφελος (παρουσιάστηκε από

τους Dobzinski and Paes Leme [2014] και, ανεξάρτητα, από τους Syrgkanis and Tardos [2013])

και προκύπτει αλλάζοντας λίγο τον ορισμό του κοινωνικού οφέλους. Συγκεκριμένα, για κάθε

παίκτη, το ρευστό όφελος λαμβάνει υπόψη το ελάχιστο μεταξύ της αποτίμησης του παίκτη για

το μερος του πόρου που παίρνει και του προϋπολογισμού του. Ακολουθώντας την πρόσφατη

εργασία των Azar et al. [2017], χρησιμοποιούμε τον όρο ρευστό κόστος της αναρχίας (LPoA, για

συντομία) για να αναφερθούμε στο κόστος της αναρχίας ως προς το ρευστό όφελος, δηλαδή,

τον λόγο του μέγιστου δυνατού ρευστού οφέλους σε οποιαδήποτε κατάσταση του παιχνιδιού

προς το ελάχιστο ρευστό όφελος σε κατάσταση ισορροπίας.

A.1.1 Αποτελέσματα και τεχνικές

Στόχος μας είναι να μελετήσουμε όλους τους μηχανισμούς κατανομής πόρων και να βρούμε

εκείνον με το καλύτερο δυνατό LPoA. Τα αποτελέσματα μας υποδεικνύουν μια ολοκληρωτικά

διαφορετική εικόνα σε σχέση με την περίπτωση όπου οι παίκτες δεν έχουν προϋπολογισμούς.

Αρχικά, δείχνουμε ένα κάτω φράγμα 2−1/n για το LPoA κάθε μηχανισμού κατανομής πόρων

για n παίκτες (υπό τυπικές υποθέσεις σχετικά με τις συναρτήσεις αποτίμησης των παικτών και

τα χαρακτηριστικά των μηχανισμών) το οποίο αποδεικνύει ότι δεν υπάρχουν πλήρως αποδο-

τικοί μηχανισμοί. Έπειτα, δείχνουμε ότι ο μηχανισμός του Kelly έχει LPoA ακριβώς 2 το οποίο

είναι σχεδόν το καλύτερο δυνατό, ενώ ο μηχανισμός των Sanghavi and Hajek (SH) έχει LPoA

ίσο με 3. Βελτιωμένα φράγματα για το LPoA είναι δυνατά για την περίπτωση των δυο παικτών.

Σχεδιάζουμε τον PYS μηχανισμό E2-PYS για δυο παίκτες ο οποίος έχει LPoA 1.792. Αυτό το

φράγμα είναι μάλιστα βέλτιστο για μια ευρεία κλάση μηχανισμών. Επίσης, σχεδιάζουμε τον

μηχανισμό E2-SR για δυο παίκτες ο οποίος έχει LPoA το πολύ 1.529 (σχεδόν καλύτερο δυνατό

με βάση το κάτω φράγμα 1.5 για δυο παίκτες) και χρησιμοποιεί πληρωμές που ορίζονται από

τον λόγο των σημάτων των παικτών. Στον Πίνακα A.1 μπορείτε να βρείτε μια σύνοψη των

αποτελεσμάτων μας.

Τα αποτελέσματα μας εκμεταλλεύονται την ιδιαίτερη δομή των παιχνιδιών και ισορροπιών

χειρότερης περίπτωσης (ως προς το LPoA). Αποδεικνύουμε ότι για κάθε μηχανισμό κατανομής

πόρων, το χειρότερο LPoA παρουσιάζεται σε στιγμιότυπα όπου οι παίκτες έχουν γραμμικές με

μετατόπιση συναρτήσεις αποτίμησης. Επιπλέον, όλοι οι παίκτες εκτός ενός έχουνπεπερασμένους
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Μηχανισμός LPoA Σχόλιο
όλοι ≥ 2− 1/n Δεν υπάρχουν πλήρως αποδοτικοί μηχανισμοί
Kelly 2 Αυστηρό φράγμα. Σχεδόν καλύτερος δυνατός μηχανισμός για n

παίκτες
SH 3 Αυστηρό φράγμα. Πλεον δεν είναι καλύτερος του Kelly
E2-PYS 1.792 Αυστηρό φράγμα. Καλύτερος δυνατός PYS μηχανισμός με κοίλη

συνάρτηση κατανομής για 2 παίκτες
E2-SR 1.529 Σχεδόν καλύτερος δυνατός μηχανισμός για 2 παίκτες

Table A.1: Μηχανισμοί και σχετικά φράγματα για το ρευστό κόστος της αναρχίας. Τα αποτε-

λέσματα αυτά δημοσιεύτηκαν στην εργασία [Caragiannis and Voudouris, 2018].

προϋπολογισμούς και επιλέγουν στρατηγικές οι οποίες συνεπάγονται είτε μηδενικές πληρωμές

είτε πληρωμές οι οποίες είναι ίσες με τους προϋπολογισμούς τους, ενώ ο μοναδικός παίκτης με

απεριόριστο προϋπολογισμό υποβάλλει το σήμα που μηδενίζει την παράγωγο της ωφέλειας

του.

Για το σενάριο όπου οι παίκτες δεν έχουν προϋπολογισμούς, οι Johari and Tsitsiklis [2004]

απέδειξαν έναν ανάλογο χαρακτηρισμό χειρότερης περίπτωσης για τον μηχανισμό του Kelly,

ο οποίος έπειτα γενικεύτηκε για όλους τους μηχανισμούς κατανομής πόρων. Συγκεκριμένα, η

χειρότερη περίπτωση είναι όταν όλοι οι παίκτες έχουν γραμμικές συναρτήσεις αποτίμησης (με

μηδενική μετατόπιση) και υποβάλλουν σήματα που μηδενίζουν τις παραγώγους των ωφελειών

τους. Συγκριτικά, ο δικός μας χαρακτηρισμός χειρότερης περίπτωσης είναι πιο πλούσιος σε

δομή, και η απόδειξη του είναι αρκετά πιο πολύπλοκη.

Ο χαρακτηρισμός περιέχει τόση πληροφορία που τα φράγματα για το LPoA ακολουθούν

σχετικά εύκολα. Το πιο ακραίο παράδειγμα είναι η απόδειξη του καλύτερου φράγματος μας

για τον μηχανισμό του Kelly, η οποία είναι μόλις μερικές γραμμές. Επίσης, ο χαρακτηριστιμός

μπορεί να χρησιμοποιηθεί για τη σχεδίαση νέων μηχανισμών. Για παράδειγμα, ο σχεδιασμός

και η ανάλυση των μηχανισμών E2-PYS και E2-SR για δυο παίκτες προκύπτουν από απλές

διαφορικές εξισώσεις πρώτου βαθμού, τις οποίες δεν θα μπορούσαμε να αναγνωρίσουμε χωρίς

τον χαρακτηρισμό μας. Ακόμη, υπό ορισμένες προϋποθέσεις (όπως, για παράδειγμα, κοίλες

συναρτήσεις κατανομής και κυρτές συναρτήσεις πληρωμών), μπορούμε να δείξουμε αυτόματα

ότι τα φράγματα για το LPoA είναι αυστηρά, χωρίς να παρουσιάσουμε κάποιο ειδικό κάτω

φράγμα (αντι-παράδειγμα).
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Σχετική βιβλιογραφία

Το ρευστό όφελος έχει μελετηθεί πρόσφατα ως μέτρο απόδοσης για την σχεδίαση φιλαληθών

μηχανισμών [Dobzinski and Paes Leme, 2014, Lu and Xiao, 2015, 2017] και για την ανάλυση

συνδυαστικών Walrasian ισορροπιών με προϋπολογισμούς [Dughmi et al., 2016]. Επίσης, έχει

χρησιμοποιηθεί από τους Azar et al. [2017] για την ανάλυση του ρευστού κόστους της αναρχίας

σε ταυτόχρονες δημοπρασίες πρώτης τιμής, και από τον Voudouris [2018] για δημοπρασίες

θέσεων διαφήμισης.

Οι Caragiannis and Voudouris [2016] ήταν οι πρώτοι που απέδειξαν ότι το ρευστό κόστος

της αναρχίας του μηχανισμού τουKelly είναι σταθερό. Συγκεκριμένα, έδειξαν έναάνωφράγμα

2.78 και ένα κάτω φράγμα 2. Ουσιαστικά, εδώ αποδεικνύουμε και πάλι το ίδιο κάτω φράγμα με

διαφορετικό και πολύ πιο ενδιαφέρον τρόπο. Οι Christodoulou et al. [2016b] βελτίωσαν το άνω

φράγμα σε 2.618 και επέκτειναν τα αποτελέσματα σε ένα πιο γενικό μοντέλο με περισσότερους

πόρους. Πριν από αυτές τις εργασίες, οι Syrgkanis and Tardos [2013] έδειξαν ότι το κοινωνικό

όφελος σε κατάσταση ισορροπίας είναι το πολύ ένας σταθερός παράγοντας του βέλτιστου ρευ-

στού οφέλους.

Σε αντίθεση με τις τεχνικές ανάλυσης που χρησιμοποιούμε εδώ, η ανάλυση του μηχα-

νισμού του Kelly από τους Caragiannis and Voudouris [2016], Christodoulou et al. [2016b]

και Syrgkanis and Tardos [2013] αξιοποιεί το πρότυπο smoothness [Roughgarden, 2015,

Roughgarden et al., 2017] και βασίζεται στη φραγή της ωφέλειας κάθε παίκτη από την ωφέ-

λεια που θα μπορούσε να έχει αν απέκλινε μονομερώς και υπέβαλλε κάποιο άλλο σήμα. Τα

αποτελέσματα αυτά ισχύουν και για πιο γενικές έννοιες ισορροπίες όπως οι συσχετιζόμενες

ισορροπίες και οι ισορροπίες κατά Bayes-Nash. Τα LPoA φράγματα μας ισχύουν μόνο για

αμιγείς ισορροπίες κατά Nash, αλλά είναι πιο ισχυρά και αυστηρά.

A.2 Διαμόρφωση απόψεων

Εδώ και αιώνες, η διαμόρφωση απόψεων έχει αποτελέσει αντικείμενο έρευνας σε επιστήμες όπως η

κοινωνιολογία, τα οικονομικά, η φυσική καθώς και η επιδημιολογία. Η διάδοση και υιοθέτηση

του Διαδικτύου έχει επιτρέψει την πρόσφατη άνθιση των κοινωνικών δικτύων, τα οποία έχουν

λειτουργούνως μέσα διάδοσης πληροφοριών οι οποίες είναι σε πολλές περιπτώσεις ευεργητικές

για τους χρήστες, αλλά συχνά χρησιμοποιούνται και στρατηγικά από συγκεκριμένα μέρη τα

οποία θέλουν με αυτόν τον τροπο να πετύχουν τους προσωπικούς τους στόχους. Αυτές οι ιδιό-

τητες έχουν πρόσφατα προσελκύσει το ενδιαφέρον των ερευνητών της τεχνητής νοημοσύνης
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[Auletta et al., 2016, Schwind et al., 2015, Tsang and Larson, 2014] καθώς και της επιστήμης των

υπολογιστών γενικότερα [Bindel et al., 2015,Mossel and Tamuz, 2014, Olshevsky andTsitsiklis,

2009], και έχει οδηγήσει σε αναθεωρήσεις των κλασικών μοντέλων για διαμόρφωση απόψεων,

χρησιμοποιώντας έννοιες και εργαλεία της Θεωρίας Παιγνίων.

Οι Friedkin and Johnsen [1990] προσπάθησαν να μοντελοποιήσουν την διάδοση απόψεων

μεταξύ ατόμων που αλληλεπιδρούν μεταξύ τους. Σύμφωνα με το μοντέλο τους, κάθε άτομο

έχει μια προσωπική πεποίθηση για κάποιο θέμα συζήτησης και εκφράζει δημοσίως κάποια,

ενδεχομένως να είναι διαφορετική από την πεποίθηση, άποψη. Οι πεποιθήσεις και οι απόψεις

αναπαριστώνταιως πραγματικοί αριθμοί. Συγκεκριμένα, η άποψη ενός ατόμουπροκύπτει από

τον μέσο όρο της προσωπικής του πεποίθησης και των απόψεων που εκφράζουν τα άτομα στον

κοινωνικό του κύκλο (ο οποίος θεωρείται σταθερός).

Πρόσφατα, οι Bindel et al. [2015] έδειξαν ότι αυτή η συμπεριφορά μπορεί να ερμηνευθεί

παιγνιο-θεωρητικά ως εξής: ο μέσος όρος μεταξύ της πεποίθησης του ατόμου και των απόψεων

που εκφράζονται στον κοινωνικό του κύκλο είναι απλώς μια στρατηγική η οποία ελαχιστοποιεί

ένα συγκεκριμένο κόστος. Αυτό το κόστος ορίζεται ως μια τετραγωνική συνάρτηση η οποία

είναι ίση με την ολική απόσταση της άποψης του ατομου από την πεποίθηση του αλλά και από

τις απόψεις που εκφράζονται στον κοινωνικό του κύκλο, στο τετράγωνο. Κατά μια έννοια, η

στρατηγική αυτή συμπεριφορά έχει ως αποτέλεσμα απόψεις που ακολουθούν την πλειοψηφία

του κοινωνικού κύκλου.

Οι Bindel et al. [2015] θεώρησαν στατικά στιγμιότυπα του υποκείμενου κοινωνικού δικτύου

και υπέθεσαν ότι η άποψη κάθε ατόμου επηρεάζεται από όλο τον κοινωνικό του κύκλο. Ωστόσο,

στη πραγματικότητα, καθώς οι απόψεις εξελίσσονται, οι άνθρωποι τείνουν να παραβλέπουν

τις απόψεις που είναι μακριά από την προσωπική τους πεποίθηση, ακόμη και αν εκφράζονται

από τους καλύτερους τους φίλους. Ακολουθώντας αυτή τη λογική, οι Bhawalkar et al. [2013]

υπέθεσαν ότι η άποψη ενός ατόμου εξαρτάται μόνο από ένα μικρό μέρος των ανθρώπων στον

κοινωνικό του κύκλο, τους οποίους καλούμε γείτονες. Επομένως, στο μοντέλο των Bhawalkar

et al. [2013], η διαμόρφωση απόψεων συν-εξελίσσεται με τη γειτονιά κάθε ατόμου, η οποία απο-

τελείται από εκείνους τους ανθρώπους που έχουν απόψεις αρκετά κοντά στην πεποίθηση του

ατόμου. Τώρα, η άποψη που εκφράζει ένα άτομο είναι μια στρατηγική η οποία ελαχιστοποιεί

και πάλι την ίδια τετραγωνική συνάρτηση κόστους, αλλά λαμβάνοντας υπόψη τη γειτονιά και

όχι ολόκληρο τον κοινωνικό κύκλο.

Τόσο οι Bindel et al. [2015] όσο και οι Bhawalkar et al. [2013] απέδειξαν μικρά σταθερά
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φράγματα (9/8 και 14, αντίστοιχα) για το κόστος της αναρχίας των στρατηγικών παιχνιδών

που προκύπτουν από τις υποθέσεις των μοντέλων τους. Ουσιαστικά, αυτά τα φράγματα υπο-

δεικνύουν ότι ένα μη φυσιολογικά μεγάλο μέρος του πληθυσμού των ανθρώπων εκφράζουν

απόψεις οι οποίες είναι πάρα πολύ κοντά στις πεποιθήσεις τους. Δυστυχώς, αυτό είναι δύσκολο

να το πιστέψει κανείς δεδομένων των τόσο διαφορετικών και, σε πολλές περιπτώσεις, ακραίων

απόψεων που εκφράζονται στα κοινωνικά δίκτυα, για παράδειγμα, σε συζητήσεις σχετικά με

πολιτική και θρησκεία.

Ακολουθούμε το μοντέλο συν-εξέλιξης, και υποθέτουμε ότι η γειτονιά κάθε ατόμου ορίζεται

από τα k άτομα που εκφράζουν απόψεις οι οποίες είναι οι πιο κοντινές στην πεποίθηση του.

Ωστόσο, αποκλίνουμε από τον ορισμό της τετραγωνικής συνάρτησης κόστος και, αντιθέτως,

θεωρούμε ότι τα άτομα προσπαθούν να συμβιβαστούν περισσότερο με τους γείτονες τους. Έτσι,

υποθέτουμε ότι κάθε άτομο προσπαθεί να ελαχιστοποιήσει τη μέγιστη απόσταση της άποψης

τους από την προσωπική του πεποίθηση και κάθε άποψης που εκφράζεται στη γειτονιά του.

Φυσικά, αυτές οι υποθέσεις οδηγούν στον ορισμό στρατηγικών παιχνιδιών, τα οποία καλούμε

k-COF παιχνίδια, όπου κάθε άτομο λειτουργεί ως παίκτης.

A.2.1 Αποτελέσματα και τεχνικές

Αρχικά αποδεικνύουμε διάφορες ιδιότητες σχετικά με τη γεωμετρική δομή των απόψεων και

των πεποιθήσεων σε αμιγείς ισορροπίες κατά Nash (καταστάσεις τους παιχνιδιύ όπου κάθε

παίκτης ελαχιστοποιεί το προσωπικό τους κόστος, υποθέτοντας ότι οι υπόλοιποι παίκτες δεν

θα αλλάξουν τις απόψεις τους).

Χρησιμοποιώντας τις δομικές αυτές ιδιότητες, δείχνουμε ότι υπάρχουν k-COF παιχνίδια τα

οποία δεν επιδέχονται αμιγείς ισορροπίες κατά Nash. Επίσης, αποδεικνύουμε ότι ακόμη και

για παιχνίδια όπου υπάρχουν ισορροπίες, η ποιότητα τους μπορεί να μην είναι βέλτιστη ως

προς το κοινωνικό κόστος (το συνολικό κόστος των παικτών), δείχνοντας ότι το κόστος της ευ-

στάθειας μεγαλώνει γραμμικά ως προς το k. Για την ειδική περίπτωση των 1-COF παιχνιδιών,

δείχνουμε ότι κάθε τέτοιο παιχνίδι μπορεί να αναπαρασταθεί ως ένα διευθυνόμενο άκυκλο

γράφημα, στο οποίο κάθε αμιγής ισορροπία κατά Nash αντιστοιχεί σε ένα μονοπάτι μεταξύ

δυο συγκεκριμένων κόμβων. Επομένως, το πρόβλημα ύπαρξης αμιγών ισορροπιών κατάNash

καθώς και τα προβλήματα υπολογισμού της καλύτερης και της χειρότερης ισορροπίας (ως προς

το κοινωνικό κόστος) είναι ισοδύναμα με απλούς υπολογισμούς ελάχιστων και μέγιστων μο-

νοπατιών σε άκυκλα γραφήματα οι οποίοι μπορούν να γίνουν σε πολυωνυμικό χρόνο.
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k PoA MPoA PoS Υπαρξη/Πολυπλοκότητα
1 3 ≥ 6 ≥ 17/15 Δεν υπάρχουν πάντα ισορροπίες

2 ∈ [18/5, 12] ≥ 24/5 ≥ 8/7 Καλύτερη/χειρότερη ισορροπία στο P

≥ 3 ∈ [k + 1, 4(k + 1)] ≥ k + 2 ≥ (k + 1)/3 Ανοικτό: πολυπλοκότητα για k ≥ 2

Table A.2: Τα αποτελέσματα μας για k-COF παιχνίδια. Ο πίνακας περιέχει φράγματα για το

κόστος της αναρχίας ως προς αμιγείς (PoA) και μικτές ισορροπίες (MPoA), για το κόστος της

ευστάθειας (PoS) καθώς και για την ύπαρξη και πολυπλοκότητα ως προς αμιγείς ισορροπίες.

Προφανώς, κάθε άνω φράγμα για το κόστος της αναρχίας είναι επίσης άνω φράγμα και για το

κόστος της ευστάθειας. Τα αποτελέσματα αυτά έχουν δημοσιευτεί στην εργασία [Caragiannis

et al., 2017a].

Για γενικά k-COF παιχνίδια, ποσοτικοποιούμε την ποιότητα των αμιγών ισορροπιών κατά

Nash (ως προς το κοινωνικό κόστος) στη χειρότερη περίπτωση, φράσσοντας το κόστος της

αναρχίας. Συγκεκριμένα, παρουσιάζουμε άνω και κάτω φράγματα για το κόστος της αναρχίας

των k-COF παιχνιδιών (ως προς αμιγείς και μικτές ισορροπίες) που εξαρτώνται γραμμικά από

το k. Στις αποδείξεις των άνω φραγμάτων μας εκμεταλλευόμαστε, με μη τετριμμένο τρόπο, τε-

χνικές γραμμικούπρογραμματισμού για ναφράξουμε από κάτω το βέλτιστο κοινωνικό κόστος.

Για την θεμελιώδη περίπτωση των 1-COF παιχνιδιών, αποδεικνύουμε ένα αυστηρό φράγμα 3

χρησιμοποιώντας ένα συγκεκριμένο σχήμα τιμολόγησης στην ανάλυση μας. Τα αποτελέσματα

μας συνοψίζονται στον Πίνακα A.2.

A.2.2 Σχετική βιβλιογραφία

Ο DeGroot [1974] πρότεινε ένα μοντέλο για την μοντελοποίηση της διαμόρφωσης απόψεων.

Σύμφωνα με αυτό το μοντελο, κάθε άτομο ενημερώνει την άποψη του μέσω μιας διαδικασίας

βεβαρυμένου μέσου όρου. Έπειτα, οι Friedkin and Johnsen [1990] αναθεώρησαν το μοντέλο του

DeGroot υποθέτοντας ότι κάθε άτομο έχει μια ιδιωτική πεποίθηση και εκφράζει μια (πιθανώς

διαφορετική) δημόσια άποψη, η οποία εξαρτάται τόσο από την πεποίθηση του όσο και από τις

απόψεις που εκφράζουν οι άνθρωποι του κοινωνικού του κύκλου. Πιο πρόσφατα, οι Bindel

et al. [2015] μελέτησαν αυτό το μοντέλο και απέδειξαν ότι η επαναληπτική αυτή διαδικασία

μέσου όρου οδηγεί σε απόψεις οι οποίες μπορούν να ερμηνευτούν ως η μοναδική ισορροπία

ενός παιχνιδιού διαμόρφωσης απόψεων.

Οι Bhawalkar et al. [2013] απέκλιναναπό την υπόθεση ότι οι απόψεις επηρεάζονται από όλο

τον κοινωνικό κύκλο, και θεώρησαν τα παιχνίδια συν-εξέλιξης που συζητήσαμε παραπάνω,
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όπου οι απόψεις αλλάζουν καθώς οι γειτονιές των ατόμων αλλάζουν. Αυτό το μοντέλο είναι

εννοιολογικά όμοιο με προηγούμενα μοντέλα που μελετηθεί από τουςHegselmann andKrause

[2002] και Holme and Newman [2006], σύμφωνα με τα οποία κάθε άτομο έχει μια παράμετρο

εμπιστοσύνης ε και λαμβάνει υπόψη μόνο τους ανθρώπους που εκφράζουν απόψεις οι οποίες

είναι ε κοντά στην πεποίθηση του.

Μια σειρά από πρόσφατες εργασίες θεωρούν διακριτά μοντέλα διαμόρφωσης απόψεων με

δυαδικές απόψεις. Οι Chierichetti et al. [2018] μελέτησαν διακριτά παιχνίδια προτίμησης, όπου

οι πεποιθήσεις και οι απόψεις είναι δυαδικές και απάντησαν ερωτήσεις σχετικές με το κόστος

της ευστάθειας. Για τέτοιου είδους παιχνίδια, οι Auletta et al. [2015, 2017a] χαρακτήρισαν τα

κοινωνικά δίκτυα όπου η πεποίθηση της μειονότητας μπορεί να αναδειχτεί ως η άποψη της

πλειονότητας, ενώ οι Auletta et al. [2017b] εξέτασαν αν αυτά τα αποτελέσματα μπορούν να

επεκταθούν σε άλλα μοντέλα. Οι Auletta et al. [2016] γενίκευσαν την κλάση των διακριτών

παιχνιδιών προτίμησης στην περίπτωση όπου οι προτιμήσεις των παικτών είναι αρκετά πιο

πολύπλοκες. Τέλος, οι Bilò et al. [2016] επέκτειναν την κλάση των παιχνιδιών συν-εξέλιξης στο

διακριτό μοντέλο.

Στην περίπτωση όπου υπάρχουν παραπάνω από ένα θέματα συζήτησης, οι Jia et al. [2015]

πρότειναν και ανέλυσαν το λεγόμενο DeGroot-Friedkin μοντέλο για την εξέλιξη ενός δικτύου

επιρροής μεταξύ των ατόμων οι οποίοι εκφράζουν απόψεις για μια σειρά από θέματα, ενώ οι

Xu et al. [2015] παρουσίασαν μια παραλλαγή συμφωνα με την οποία κάθε άτομο μπορεί να

επαν-υπολογίσει το βάρος που θέτει στην άποψη του, μετά από συζήτηση κάθε θέματος με τους

ανθρώπους του κοινωνικού του κύκλου.

Μια άλλη γραμμή έρευνας έχει επικεντρωθεί στη μελέτη της ταχύτητας με την οποία ένα σύ-

στημα συγκλίνει σε μια σταθερή κατάσταση. Σε αυτά τα πλασίσια, οι Etesami and Basar [2015]

μελέτησαν την δυναμική του Hegselmann-Krause μοντέλου συν-εξέλιξης και εστίασαν στον

χρόνο τερματισμού για διάφορες περιπτώσεις. Όμοια, οι Ferraioli et al. [2016] μελέτησαν την

σύγκλιση αποκεντρωμένων δυναμικών σε πεπερασμένα παιχνίδια διαμόρφωσης απόψεων, με

παίκτες που έχουν μόνο έναν πεπερασμένο αριθμό από διαθέσιμες απόψεις. Οι Ferraioli and

Ventre [2017] μελέτησαν τον ρόλο που παίζει η κοινωνική πίεση και έδειξαν αυστηρά φράγ-

ματα για τον χρόνο τερματισμού στην πολύ σημαντική ειδική περίπτωση όπου το κοινωνικό

δίκτυο είναι κλίκα.

Οι Das et al. [2014], ύστερα από μια σειρά διαδικτυακών ερωτηματολογίων, κατέληξαν ότι

τα πιο γνωστά θεωρητικά μοντέλα δεν εξηγούν εντελώς τα πειραματικά τους αποτελέσματα.
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Έτσι, παρουσίασαν ένα νέο αναλυτικό μοντέλο για διαμόρφωση απόψεων, και έδειξαν τόσο

θεωρητικά όσο και πειραματικά προκαταρκτικά αποτελέσματα για την σύγκλιση και την δομή

των απόψεων όταν οι χρήστες ενημερώνουν τις απόψεις του επαναληπτικά σύμφωνα με το

μοντέλο τους.

Ο Chazelle [2012] μελέτησε και ανέλυσε συστήματα επιρροής, όπου κάθε άτομο παρατηρεί

τις τοποθεσίες των γειτόνων του και κινείται αναλόγως. Οι Kempe et al. [2016] παρουσίασαν

ένα μοντέλο για ανάλυση πολιτιστικής δυναμικής, και εστίασαν στην αλληλεπίδραση μεταξύ

επιλογής και επιρροής. Μεταξύ άλλων αποτελεσμάτων, παρουσίασαν έναν χαρακτηρισμό των

σταθερών καταστάσεων και έδειξαν ότι το σύστημα συγκλίνει πάντα χωρίς να επηρεάζεται από

την αρχική κατάσταση. Οι Gomez-Rodriguez et al. [2012] μελέτησαν φαινόμενα διάχυσης και

μεταδοτικής διάδοσης πληροφοριών σε δίκτυα. Τέλος, οι Kempe et al. [2015] μελέτησαν ένα

πρόβλημα βελτιστοποίησης για την μεγιστοποίηση της επιρροής σε κοινωνικά δίκτυα, όπου

κάθε άτομο μπορεί να αποφασίσει να υιοθετήσει μια ιδέα ανάλογα με το πόσοι από τους γεί-

τονες του την έχουν ήδη υιοθετήσει. Ο στόχος είναι η επιλογή ενός αρχικού συνόλου ατόμων

που υιοθετούν την ιδέα με σκοπό να μεγιστοποιηθεί ο τελικός αριθμός των ατόμων που τους

ακολουθούν.

A.3 Μεταφορά ιδιοκτησίας

Τα πιο γνωστά προβλήματα της υπολογιστικής κοινωνικής επιλογής [Brandt et al., 2016] αφορούν

την αποδοτική συγχώνευση ατομικών προτιμήσεων επί των εναλλακτικών επιλογών (οι οποίες

εκφράζονται συνήθως υπό τη μορφή κατατάξεων) σε μια συλλογική απόφαση [Caragiannis et al.,

2017,b, Procaccia et al., 2012, Skowron et al., 2016]. Οι περισσότεροι μηχανισμοί που υλοποιούν

τη διαδικασία συγχώνευσης είναι θεσιακοί και, άρα, δεν εκμεταλλεύονται τις συγκεκριμένες

αριθμητικές αποτιμήσεις των ατόμων. Επιπλέον, λόγω διάφορων γνωστών αποτελεσμάτων

αδυναμίας [Gibbard, 1973, Satterthwaite, 1975], τέτοιου είδους μηχανισμοί δεν είναι φιλαλήθεις.

Δηλαδή, κάποιοι από τους συμμετέχοντες ενδέχεται να έχουν ισχυρά κίνητρα να πουν ψέματα

σχετικά με τις προτιμήσεις τους ώστε να χειραγωγήσουν τον μηχανισμό και να τον οδηγήσουν

στο να επιλέξει μια εναλλακτική επιλογή την οποία προτιμούν περισσότερο (από αυτή που θα

επέλεγε αν έλεγαν την αλήθεια).

Αντίθετα, η κλάση των φιλαληθών αριθμητικών μηχανισμών έχει αποδειχτεί ότι είναι πολύ

πιο πλούσια [Barbera et al., 1998, Feige and Tennenholtz, 2010, Freixas, 1984]. Μπορούμε να

βελτιώσουμε την συνολική ευημερία της κοινωνίας, αξιοποιώντας τις επιπλέον πληροφορίες
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πουπεριέχουν οι αριθμητικές ατομικές αποτιμήσεις [Cheng, 2016, Filos-Ratsikas andMiltersen,

2014, Guo and Conitzer, 2010]. Οι φιλαλήθεις μηχανισμοί που χρησιμοποιούν χρήματα έχουν

αναλυθεί εκτενώς στη σχετική βιβλιογραφία, και οι μηχανισμοί που μεγιστοποιούν το κοινω-

νικό όφελος έχουν ήδη σχεδιαστεί για διάφορες κλάσεις προβλημάτων [Nisan et al., 2007]. Ένα

διάσημο τέτοιο παράδειγμα είναι η οικογένεια των VCG μηχανισμών [Clarke, 1971, Groves,

1973, Vickrey, 1961].

Ωστόσο, υπάρχει ένα αρκετά μεγάλο σύνολο προβλημάτων υβριδικής κοινωνικής επιλογής,

όπου η μεταφορά χρημάτων δεν είναι δυνατή για κάποιο μέρος του πληθυσμού. Επομένως,

η σχεδίαση φιλαληθών, αριθμητικών μηχανισμών είναι μια αρκετά πολύπλοκη διαδικασία και

πρέπει να συνδυαστούν στοιχεία σχεδιάσης μηχανισμών με χρήματα καθώς και κοινωνικής

επιλογής. Μελετάμε τέτοιου είδους σενάρια στα πλαίσια της μεταφοράς ιδιοκτησίας, όπου

έχουμε ένα σύνολο πιθανών αγοραστών με χρηματικές αποτιμήσεις για μια εταιρεία, ενώ

υπάρχει και ένα σύνολο ειδικών (π.χ., το διοικητικό συμβούλιο της εταιρείας) οι οποίοι έχουν

απόψεις για το σε ποιον θα πρέπει τελικά να πουληθεί η εταιρεία. Ο στόχος είναι να πάρουμε

την απόφαση που μεγιστοποιεί το κοινωνικό όφελος, το οποίο λαμβάνει υπόψη τις αριθμητικές

αποτιμήσεις τόσο των αγοραστών όσο και των ειδικών.

Αυτό το σενάριο μοντελοποιεί διάφορες ενδιαφέρουσες πραγματικές περιπτώσεις. Μια

πρώτη εφαρμογή αφορά την αποκρατικοποίηση κρατικών περιουσιακών στοιχείων, όπου ένα

σύνολο πιθανών αγοραστών ενδιαφέρεται να τα αποκτήσει, ενώ διάφοροι οργανισμοί πολιτών

στοχεύουν στο να εγγυηθούν ότι η επιλογή θα είναι υπέρ των πολιτών. Παρόμοιες περιπτώσεις

μεταφοράς ιδιοκτησίας προκύπτουν κατά την ανάθεση αθλητικών διοργανώσεων όπως το Πα-

γκόσμιο Κύπελλο ποδοσφαίρου και οι Ολυμπιακοί αγώνες, όπου λαμβάνονται υπόψη τόσο οι

προσφορές των ενδιαφερόμενων διοργανωτών (χώρες) όσο και οι συστάσεις των αντίστοιχων

διοικητικών αρχών (π.χ. FIFA.com, 2018).

A.3.1 Αποτελέσματα και τεχνικές

Στην Διατριβή αυτή εστιάζουμε στο θεμελιώδες σενάριο όπου έχουμε δυο πιθανούς αγοραστές

A καιB, και έναν ειδικό με αριθμητικές αποτιμήσεις για τις τρεις εναλλακτικές επιλογές του να

πουλήσουμε στον αγοραστή A, να πουλήσουμε στον B, ή να μην πουλήσουμε καθόλου (στην

οποία περίπτωση η μεταφορά ιδιοκτησίας δεν πραγματοποιείται). Ένα μηχανισμός δέχεται ως

είσοδο τις προσφορές των αγοραστών καθώς και τις αποτιμήσεις του ειδικού, και αποφασίζει

μία εναλλακτική ως το αποτέλεσμα. Γενικά, οι μηχανισμοί είναι πιθανοτικοί και το αποτέλεσμα

επιλέγεται σύμφωνα με μια πιθανοτική κατανομή (ή λοταρία) επί των τριών εναλλακτικών.
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Κλάση μηχανισμών Λόγος προσέγγισης Σχόλιο
Θεσιακοί 1.5 μηχανισμοί EOM, BOM

καλύτερο δυνατό φράγμα
Ανεξάρτητοι των προσφορών 1.377 μηχανισμός BIM

καλύτερος δυνατός
Ανεξάρτητοι του ειδικού 1.343 μηχανισμός EIM

καλύτερος δυνατός
Πρότυπο 1.25 πιθανοτικός μηχανισμός R

καλύτερος always-sell
1.618 ντετερμινιστικός μηχανισμός D

καλύτερος ντερμινιστικός
Όλοι 1.14 κάτω φράγμα

Table A.3: Περίληψη των αποτελεσμάτων μας. Δείτε την εργασία [Caragiannis et al., 2018].

Θεωρούμε φιλαλήθεις μηχανισμούς οι οποίοι αξιοποιούν διαφορετικά επίπεδα γνώσης. Πιο

συγκεκριμένα, μελετάμε θεσιακούς, ανεξάρτητους των προσφορών, ανεξάρτητους του ειδικού, καθώς

και γενικούς φιλαλήθεις μηχανισμούς οι οποίοι λαμβάνουν υπόψη τις αποτιμήσεις τόσο των αγο-

ραστών όσο και του ειδικού. Υποθέτουμε ντετερμινιστικούς και πιθανοτικούς μηχανισμούς, ενώ ως

μέτρο απόδοσης χρησιμοποιούμε την έννοια του λόγου προσέγγισης ως προς το κοινωνικό

όφελος, το οποίο λαμβάνει υπόψη τις αποτιμήσεις τόσο των αγοραστών όσο και του ειδικού.

Για κάθε κλάση μηχανισμών, αποδεικνύουμε κάτω φράγματα για τον λόγο προσέγγισης όλων

των σχετικών μηχανισμών και εντοπίζουμε τον καλύτερο μεταξύ αυτών. Τα αποτελέσματα μας

συνοψίζονται στον Πίνακα A.3.

Οι τεχνικές μας στηρίζονται στο γεγονός ότι κάθε μηχανισμός μπορεί να θεωρηθεί ως μια

λοταρία η οποία αναθέτει πιθανότητες στις εναλλακτικές επιλογές (A, B, ή κανένας από τους

δυο) που ορίζονται από την είσοδο που παρέχουν ο ειδικός και οι αγοραστές. Η γενική μας

στρατηγική για να εντοπίσουμε τον καλύτερο δυνατό φιλαλήθη μηχανισμό για κάθε κλάση

που θεωρούμε είναι η εξής. Για κάθε πιθανό λόγο προσέγγισης, πρώτα χαρακτηρίζουμε τον

χώρο των φιλαληθών μηχανισμών υπολογίζοντας κατάλληλα φράγματα για τις πιθανότητες

που μπορεί να ορίσει η αντίστοιχη λοταρία. Έπειτα, υπολογίζουμε τον ελάχιστο δυνατό λόγο

προσέγγισης που ορίζει έναν εφικτό (όχι κενό) χώρο φιλαληθών μηχανισμών.

A.3.2 Σχετική βιβλιογραφία

Σε μια αγορά, οι συγχωνεύσεις και οι αγορές εταιρειών παίζουν κεντρικό ρόλο στον ανταγωνι-

σμό μεταξύ δημοσίων και ιδιωτικών οργανισμών. Υπάρχουν άπλετες ενδείξεις ότι η μεταφορά

της ιδιοκτησίας μια εταιρείας επηρεάζει σημαντικά την οικονομία τόσο των εργαζομένων όσο

και των καταναλωτών της [Auerbach, 2008, Hitt et al., 2001]. Σύμφωνα με δεδομένα της Ευ-
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ρωπαικής Ενωσης, έχουν πραγματοποιηθεί περισσότερες από 6500 συγχωνεύσεις από το 1990,

ενώ έχουν οριστεί αυστηροί κανόνες που διέπουν το πως τέτοιου είδους συγχωνεύσεις πρέπει

να γίνονται.

Το μοντέλο μας είναι ένα στιγμιότυπο προσεγγιστικής σχεδίασης μηχανισμών με χρήματα

[Nisan and Ronen, 2001] και χωρίς χρήματα [Procaccia and Tennenholtz, 2013], η οποία

έχει προταθεί για προβλήματα βελτιστοποίησης υπό αυστηρούς περιορισμούς φιλαλήθειας. Ο

Myerson [1981] απέδειξε ικανούς και αναγκαίους περιορισμούς για φιλαλήθεις μηχανισμούς

με χρήματα (ντετερμινιστικούς ή πιθανοτικούς). Αυτός ο χαρακτηρισμός μας επιτρέπει να μην

ασχοληθούμε με συναρτήσεις πληρωμών για την πλευρά των αγοραστών, καθώς αυτές είναι

καλώς ορισμένες δεδομένων των πιθανοτήτων επιλογής. Επίσης, μας έδωσε όλα τα απαραίτητα

εργαλεία ώστε να επιχειρηματολογήσουμε σχετικά με την δομή των φιλαληθών μηχανισμών

χωρίς χρήματα από την πλευρά του ειδικού.

Για προβλήματα όπου μπορούν να χρησιμοποιηθούν χρήματα, ο γνωστός μηχανισμός

VCG [Clarke, 1971, Groves, 1973, Vickrey, 1961] έχει μερικές πολύ σημαντικές ιδιότητες: είναι

ντετερμινιστικός, φιλαλήθης, και μεγιστοποιεί το κοινωνικό όφελος. Ωστόσο, όπως είδαμε και

προηγουμένως, στο υβριδικό μοντέλο σχεδίασης μηχανισμών που θεωρούμε εδώ, θα πρέπει να

λάβουμε υπόψη και τις αποτιμήσεις του ειδικού. Επομένως, ο μηχανισμός VCG δεν είναι πλέον

φιλαλήθης ούτε βέλτιστος. Από την πλευρά του ειδικού, οι φιλαλήθεις μηχανισμοί μπορούν

να θεωρηθούν ως φιλαλήθεις κανόνες ψηφοφορίας. Δυστυχώς, πολύ γνωστά αποτελέσματα

αδυναμίας [Gibbard, 1973, Satterthwaite, 1975] περιορίζουν την κλάση των ντετερμινιστικών

φιλαληθών κανόνων ψηφοφορίας μόνο σε δικτατορικούς μηχανισμούς.

Αντίθετα, η κλάση των πιθανοτικών κανόνων ψηφοφορίας είναι πλουσιότερη και περιέχει

λογικούς φιλαλήθεις κανόνες οι οποίοι δεν είναι δικτατορικοί. Ο Gibbard [1977] χαρακτήρισε

την κλάση των θεσιακών πιθανοτικών κανόνων, αλλά δεν είναι ακόμη γνωστό αν υπάρχει ένας

πιο γενικός χαρακτηρισμός για όλους τους αριθμητικούς κανόνες. Πάρα πολλές εργασίες στην

κλασική οικονομική βιβλιογραφία καθώς και στην αντίστοιχη της επιστήμης των υπολογιστών

έχουν αφιερωθεί στην σχεδίαση φιλαληθών αριθμητικών κανόνων καθώς και στην απόδειξη

δομικών ιδιοτήτων για περιορισμένες κλάσεις. Ο Gibbard [1978] απέδειξε έναν χαρακτηρισμό

ο οποίος ισχύει μόνο για χώρους διακριτών στρατηγικών, ενώ αργότερα ο Hylland [1980] απέ-

δειξε ότι η κλάση τωνφιλαληθών μηχανισμώνπου είναι αποδοτικοί κατά Pareto ανάγεται στην

κλάση των πιθανοτικών δικτατορικών κανόνων.

O Freixas [1984] χρησιμοποίησε την μέθοδο των διαφορών [Laffont and Maskin, 1980] για
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να σχεδιάσει μια κλάση φιλαληθών μηχανισμών η οποία ουσιαστικά χαρακτηρίζει την κλάση

των (δυο φορές) παραγωγίσιμων (επί υποδιαστημάτων του χώρου αποτιμήσεων) μηχανισμών.

Ο καλύτερος φιλαλήθης ανεξάρτητος-των-προσφορών μηχανισμών που προτείνουμε μπορεί

να θεωρηθεί ως ένας μηχανισμός αυτής της κλάσης. Έπειτα, οι Barbera et al. [1998] έδειξαν ότι

υπάρχουν πολλοί φιλαλήθεις μηχανισμοί οι οποίοι δεν ανήκουν στις κλάσεις που μελέτησε

ο Freixas [1984]. Ακόμη, οι Feige and Tennenholtz [2010] σχεδίασαν μια κλάση αριθμητικών

φιλαληθών μηχανισμών για έναψηφοφόρο μόνο, όπου οι πιθανότητες επιλογής ορίζονται από

συγκεκριμένα πολυώνυμα.

Το πρόβλημα της μεγιστοποίησης του κοινωνικού οφέλους χωρίς χρήματα έχει μελετηθεί σε

πολλαπλές εργασίες, τόσο για γενικά μοντελά κοινωνικής επιλογής [Bhaskar et al., 2018, Filos-

Ratsikas andMiltersen, 2014] όσο και για ειδικές περιπτώσεις όπως προβλήματα ταιριασμάτων

και κατανομής πόρων [Cheng, 2016, Filos-Ratsikas et al., 2014, Guo andConitzer, 2010]. Όμοια

με εμάς, οι Filos-Ratsikas and Miltersen [2014] χρησιμοποιούν φιλαλήθεις μηχανισμούς για

ένα ψηφοφόρο ώστε να πετύχουν βελτιωμένες εγγυήσεις απόδοσης. Ωστόσο, η παρουσία των

αγοραστών διακρίνει σημαντικά το μοντέλο μας από το δικό τους (όπως και από τα μοντέλα

άλλων σχετικών εργασιών).

Μια άλλη σχετική έννοια είναι αυτή της παραμόρφωσης των (μη φιλαληθών) μηχανισμών

οι οποίοι λειτουργούν υπό περιορισμένη(θεσιακή) πληροφόρηση [Anshelevich et al., 2015,

Boutilier et al., 2015, Caragiannis et al., 2017b, Caragiannis and Procaccia, 2011, Caragiannis

et al., 2016]. Αν και η έλλειψη πληροφόρησης έχει αποτελέσει έναν περιοριστικό παράγοντα

για κάποια από τα αποτελέσματα μας, εστιάζουμε κυρίως σε αριθμητικούς μηχανισμούς για

τους οποίους η φιλαλήθεια είναι ο βασικός περιορισμός.

A.4 Ασυμμετρία πληροφορίας για μεγιστοποίηση εσόδων

Η εκμετάλλευση ασυμμετριών στην πληροφόρηση είναι ένα αντικείμενο έρευνας που ξεκίνησε

από την πρωτοποριακή εργασία του Akerlof [1970] ο οποίος μελέτησε τέτοια φαινόμενα στην

λεγόμενη αγορά των λεμονιών. Υποθέστε μια αγορά αυτοκινήτων η οποία περιέχει αυτοκίνητα

υψηλής ποιότητας (τα οποία είναι γνωστά ως ροδάκινα) καθώς και χαμηλής ποιότητας που

εμφανίζουν προβλήματα μετά την τελική τους αγορά (τα οποία είναι γνωστά ως λεμόνια). Σε

μια τέτοια αγορά, ο πωλητής έχει αρκετά πιο ακριβή πληροφόρηση σχετικά με την ποιότητα

των αυτοκινήτων, ενώ οι αγοραστές δεν μπορούν να ξεχωρίσουν τα ροδάκινα από τα λεμόνια.

Επομένως, προκύπτει ένα ενδιαφέρον πρόβλημα στρατηγικής απόφασης από την πλευρά του

163



πωλητή με σκοπό να βρει τον καλύτερο δυνατό τρόπο ώστε να εκμεταλλευτεί την κατάσταση

και να θέσει υψηλότερες τιμές για τα αυτοκίνητα. Αναμενόμενα, η εργασία τουAkerlof σχετικά

με την ασυμμετρική πληροφόρηση έδωσε το έναυσμα για περαιτέρω έρευνα στην περιοχή της

οικονομικής θεωρίας [Crawford and Sobel, 1982, Levin and Milgrom, 2010, Milgrom, 2010,

Milgrom and Weber, 1982] και, πρόσφατα, στην επιστήμη των υπολογιστών [Dughmi, 2014,

Emek et al., 2012, Ghosh et al., 2007, Guo and Deligkas, 2013, Miltersen and Sheffet, 2012].

Ακολουθούμε την εργασία των Alon et al. [2013] και εστιάζουμε σε πιθανοτικές πωλήσεις

τύπου αποδέξου ή απέρριψε, όπου υπάρχουν m αντικείμενα και n πιθανοί αγοραστές. Κάθε

αγοραστής έχει μια αποτίμηση για κάθε αντικείμενο, και υποθέτουμε ότι γενικά δεν γνωρίζει

την ύπαρξη των άλλων αγοραστών και των αποτιμήσεων τους. Σύμφωνα με μια πιθανοτική

κατανομή, η φύση επιλέγει τυχαία ένα μοναδικό αντικείμενο προς πώληση. Έπειτα, ο πωλητής

προσεγγίζει τον αγοραστή με τη μεγαλύτερη αποτίμηση και του προσφέρει το αντικείμενο σε

τιμή ίση με την αποτίμηση του για το αντικείμενο. Ένα συγκεκριμένο στιγμιότυπο αυτού του

σεναρίου θα μπορούσε να είναι το εξής: τα αντικείμενα αντιστοιχούν σε λέξεις κλειδιά και οι

πιθανοί αγοραστές αντιστοιχούν σε διαφημιστές. Κάθε διαφημιστής έχει μια αποτίμηση για

κάθε λέξη κλειδί η οποία αναπαριστά το μέγιστο ποσό χρημάτων που είναι διαθέσιμος να πλη-

ρώσει προκειμένου να δεσμεύσει τον χώρο διαφήμισης που δίνεται όταν γίνεται αναζήτηση

της συγκεκριμένης λέξης κλειδί. Η φύση αντιστοιχεί στους χρήστες που κάνουν αναζητήσεις,

ενώ ο πωλητής αντιστοιχεί στην μηχανή αναζήτησης, η οποία δεσμεύει τον χώρο διαφήμισης

ανάλογα με την λέξη κλειδ και στοχεύει στη μεγιστοποίηση των εσόδων της.

Μπορεί να ο πωλητής να εκμεταλλευτεί το γεγονός ότι διαθέτει πιο ακριβή πληροφόρηση

σχετικά με τα αντικείμενα προς πώληση σε σχέση με τους πιθανούς αγοραστές; Συγκεκριμένα,

η ασυμμετρία πληροφορίας προκύπτει από το γεγονός ότι ο πωλητής γνωρίζει το αντικείμενο

που επιλέγει η φύση τυχαία, ενώ οι αγοραστές δεν το γνωρίζουν. Μια πιθανή προσέγγιση είναι

ο πωλητής να μπορεί να ορίσει ένα σχήμα σημάτων ανάλογα με τον αγοραστή. Δηλαδή, για

καθε αγοραστή, ο πωλητής μπορεί να χωρίσει τα αντικείμενα σε ανα δυο ανεξάρτητα σύνολα

και να δηλώσει αυτήν την διαμέριση στον αγοραστή. Για παράδειγμα, η μηχανή αναζήτησης

θα μπορούσε να ομαδοποιήσει μαζί συγκεκριμένες λέξεις κλειδιά οι οποίες συσχετίζονται η

μια με την άλλη. Μετά την τυχαία επιλογή της φύσης, ο πωλητής μπορεί να αποκαλύψει στον

κάθε αγοραστή την ομάδα που περιέχει το αντικείμενο, έτσι ώστε να του επιτρέψει να επαν-

υπολογίσει την αποτίμηση του για την ομάδα αυτή.

Οι Alon et al. [2013] παρουσίασαν το πρόβλημα μη-συμμετρικής διαμέρισης πίνακα με σκοπό
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να μοντελοποιήσουν το πρόβλημα της μεγιστοποίησης εσόδων σε πωλήσεις τύπου αποδέξου

ή απέρριψε. Τα στιγμιότυπα του προβλήματος αποτελούνται από έναν n × m πίνακα A με

μη-αρνητικές εγγραφές και μια πιθανοτική κατανομή p επί των στηλών του. Διακρίνουμε δύο

περιπτώσεις για την πιθανοτική κατανομή επί των στηλών του πίνακα εισόδου, ανάλογα με το

αν είναι ομοιόμορφη ή μη-ομοιόμορφη. Ένα σχήμα διαμέρισης B = (B1, ..., Bn) για τον πίνακα

A αποτελείται από μια διαμέρισηBi του συνόλου [m] για κάθε γραμμή i τουA. Συγκεκριμένα,

τοBi είναι μια συλλογή η οποίααποτελείται από ki, ανά δύοανεξάρτητα, υποσυνόλαBik ⊆ [m]

(με 1 ≤ k ≤ ki) έτσι ώστε
∪ki

k=1Bik = [m]. Μπορούμε να φανταστούμε κάθε διαμέριση Bi ως

έναν τελεστή ομαλότητας ο οποίος δρα πάνω στις εγγραφές της γραμμής i και αλλάζει τις τιμές

τους στην αναμενόμενη τιμή του υποσυνόλου διαμέρισης στο οποίο ανήκουν. Τυπικά, η ομαλή

τιμή μιας εγγραφής (i, j) τέτοια ώστε j ∈ Bik ορίζεται ως

AB
ij =

∑
ℓ∈Bik

pℓ ·Aiℓ∑
ℓ∈Bik

pℓ
.

Παρατηρήστε ότι όλες οι εγγραφές (i, j) με j ∈ Bik έχουν την ίδια ομαλή τιμή. Δεδομένου ενός

σχήματος διαμέρισης B το οποίο συνεπάγεται έναν ομαλό πίνακα AB , η τιμή διαμέρισης ορίζεται

ως η αναμενόμενη μέγιστη εγγραφή στις στήλες του AB , δηλαδή,

vB(A, p) =
∑
j∈[m]

pj ·max
i

AB
ij .

Σκοπός του προβλήματος είναι ο υπολογισμός ενός σχήματος διαμέρισης B έτσι ώστε η τιμή

διαμέρισης vB(A, p) να μεγιστοποιείται.

Η σχέση του προβλήματος μη-συμμετρικής διαμέρισης με το πρόβλημα μεγιστοποίησης

εσόδων σε πωλήσεις τύπου αποδέξου ή απέρριψε είναι η εξής: οι στήλες του πίνακα εισόδου

αντιστοιχούν σε αντικείμενα, οι γραμμές αντιστοιχούν στους πιθανούς αγοραστές, και η τιμή

της εγγραφής (i, j) αντιστοιχεί στην αποτίμηση του αγοραστή i για το αντικείμενο j. Μετά τη

διαμέριση των αντικειμένων σε υποσύνολα για ένα συγκεκριμένο αγοραστή, η ομαλή τιμή ενός

υποσυνόλουαντιστοιχεί στηναναμενόμενηαποτίμηση τουαγοραστή για κάθε αντικείμενο του

συγκεκριμένου υποσυνόλου. Τέλος, η τιμή διαμέρισης αντιστοιχεί στα έσοδα που αναμένεται

να έχει ο πωλητής.

A.4.1 Αποτελέσματα και τεχνικές

Μεταξύ άλλων αποτελεσμάτων, οι Alon et al. [2013] απέδειξαν ότι το πρόβλημα είναι APX-

hard ακόμη και για την περίπτωση όπου ο πίνακας περιέχει δυαδικές τιμές, και σχεδίασαν
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έναν 0.563- και έναν 1/13-προσεγγιστικό αλγόριθμο για τις περιπτώσεις όπου η πιθανοτική

κατανομή επί των στηλών του πίνακα είναι ομοιόμορφη και μη-ομοιόμορφη, αντίστοιχα. Βελ-

τιώνουμε σημαντικά και τα δυο αυτά αποτελέσματα.Παρουσιάζουμε έναν 9/10-προσεγγιστικό

αλγόριθμο για ομοιόμορφες πιθανοτικές κατανομές, καθώς και έναν (1− 1/e)-προσεγγιστικό

αλγόριθμο για μη-ομοιόμορφες πιθανοτικές κατανομές. Το σύνολο αυτών των αποτελεσμάτων

έχουν δημοσιευτεί στην εργασία [Abed et al., 2018].

Για την ομοιόμορφη περίπτωση, ο αλγόριθμος μας πρώτα καλύπτει τις στήλες που έχουν

τουλάχιστον έναν άσσο, και έπειτα ταιριάζει με άπληστο τρόπο τις στήλες που περιέχουν μόνο

μηδενικά με άσσους σε συγκεκριμένες γραμμές. Η ανάλυση αυτού του αλγορίθμου είναι εξαι-

ρετικά ενδιαφέρουσα καθώς, παρά το γεγονός ότι ο αλγόριθμος είναι αμιγώς συνδυαστικός,

εκμεταλλεύεται τεχνικές γραμμικού προγραμματισμού και δυικότητας.

Για την γενική μη-ομοιόμορφη περίπτωση, εκμεταλλευόμαστε τη σχέση του προβλήματος

μη-συμμετρικής διαμέρισης δυαδικού πίνακα με το πρόβλημα μεγιστοποίησης κοινωνικού

οφέλους με κοίλες συναρτήσεις αποτίμησης, και χρησιμοποιούμε γνωστούς αλγορίθμους από

τη σχετική βιβλιογραφία. Πρώτα συζητάμε την πιθανή εφαρμογή ενός απλού άπληστου 1/2–

προσεγγιστικού αλγορίθμου, ο οποίος έχει μελετηθεί από τους Lehmann et al. [2006]. Έπειτα,

εφαρμόζουμε τον ομαλό άπληστο (1− 1/e)-προσεγγιστικό αλγόριθμο του Vondrák [2008].

Στο πρόβλημα μεγιστοποίησης κοινωνικού οφέλους με κοίλες συναρτήσεις, ο αλγόριθμος

του Vondrák είναι ο καλύτερος δυνατός στο μοντέλο ερωτημάτων αποτίμησης, όπου έχουμε

πρόσβαση σε ένα oracle που απαντάει γρήγορα σε ερωτήσεις σχετικά με τις αποτιμήσεις των

αγοραστών για συγκεκρικένα σύνολα αντικειμένων [Khot et al., 2008]. Οι Feige and Vondrák

[2010] έδειξαν ότι υπάρχουν βελτιωμένοι (1 − 1/e + ϵ)-προσεγγιστικοί αλγόριθμοι για το πιο

ισχυρό μοντελό ερωτημάτων απαίτησης, όπου έχουμε πρόσβαση σε ένα oracle που απαντάει

γρήγορα σε ερωτήσεις σχετικά με το ποιο σύνολο αντικειμένων πετυχαίνει συγκεκριμένη απο-

τίμηση για έναν αγοραστή. Συζητάμε την δυνατότητα εφαρμογής τέτοιων αλγορίθμων για το

πρόβλημα μη-συμμετρικής διαμέρισης πίνακα και παρατηρούμε ότι η απάντηση ερωτημάτων

απαίτησης είναι NP-hard γενικά.

A.4.2 Σχετική βιβλιογραφία

Πέρα από την δυαδική περίπτωση, οι Alon et al. [2013] μελέτησαν επίσης και την πιο γενική

περίπτωση του προβλήματος μη-συμμετρικής διαμέρισης πίνακα όπου ο πίνακας αποτελείται

από μη-αρνητικούς πραγματικούς αριθμούς, και παρουσίασαν έναν 1/2- και ένανΩ(1/ logm)-
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προσεγγιστικό αλγόριθμο για ομοιόμορφες και μη-ομοιόμορφες πιθανοτικες κατανομές. Η

κοινή ιδέα των αλγορίθμων είναι ο εντοπισμός ενός συνόλου εγγραφών με μεγάλες τιμές το

οποίο μπορεί να ομαδοποιηθεί μαζι με άλλες εγγραφές που περιέχουν αρκετά μικρές τιμές έτσι

ώστε να αυξηθεί η συνολική τους προσφορά στην τιμή διαμέρισης.

Η πιθανή μοντελοποίηση του προβλήματος μεγιστοποίησης εσόδων σε πωλήσεις τύπου

αποδέξου ή απέρριψε από το πρόβλημα μη-συμμετρικής διαμέρισης πίνακα, αποτελεί μέρος

μιας γραμμής έρευνας η οποία μελετά την επίπτωση της μη συμμετρικής πληροφόρησης στην

ποιότητα των αγορών. Οπως συζητήσαμε και παραπάνω, ο Akerlof [1970] ήταν ο πρώτος που

παρουσίασε μια τυπική ανάλυση για την αγορά των λεμονιών, όπου ο πωλητής έχει πιο ακριβή

πληροφόρηση για την ποιότητα των προιόντων σε σχέση με τους πιθανούς αγοραστές.

Η ιδέα του να διαμερίσουμε το σύνολο των αντικειμένων σε διαφορετικές ομάδες για κάθε

αγοραστή και ύστερα να ενημερώσουμε σε κάθε αγοραστή την ομάδα που περιέχει το τυχαίο

αντικείμενο, προέρχεται από την μέθοδο στρατηγικής μετάδοσης πληροφοριών των Crawford

and Sobel [1982], όπου ο πωλητής έχει πληροφορίες σχετικά με τις αποτιμήσεις των αγοραστών,

και στρατηγικά στοχεύει στο να εκμεταλλευτεί αυτό το πλεονέκτημα ώστε να μεγιστοποιήσει τα

έσοδα του. Για να δουλέψει μια τέτοια προσέγγιση όμως, πρέπει να υποθέσουμε τον επιπλέον

περιορισμό ότι οι αγοραστές δεν γνωρίζουν ο ένας τον άλλο και δεν γνωρίζουν λεπτομέρειες

σχετικά με τον υποκείμενο μηχανισμό, καθώς διαφορετικά θα μπορούσαν να μάθουν ποιο εί-

ναι πραγματικά το αντικείμενο προς πώληση. Αν αυτό δεν είναι δυνατό, τότε η αρχή σύνδεσης

των Milgrom and Weber [1982] υποδεικνύει ότι η καλύτερη στρατηγική του πωλητή είναι να

αποκαλύψει όλες τις πληροφορίες που έχει στους αγοραστές.

Οι Levin and Milgrom [2010] καθώς και ο Milgrom [2010] έδειξαν ότι ο καλύτερος τρόπος

για να εκμεταλλευτεί κανείς πιθανές ασυμμετρίες στην πληροφόρηση είναι μέσω κατάλληλης

διαμέρισης των αντικειμένων σε ομάδες. Στη βιβλιογραφία έχουν προταθεί διάφορα μοντέλα

για αποκάλυψη κατάλληλων πληροφοριών στους αγοραστές. Για παράδειγμα, οι Ghosh et al.

[2007] θεώρησαν πλήρη πληροφόρηση και πρότειναν ένα σχήμα ομαδοποίησης σύμφωνα με

το οποίο, τα αντικείμενα διαμερίζονται σε υποσύνολα και, έπειτα, για κάθε ένα από αυτά τα

υποσύνολα, εκτελείται μια ξεχωριστή δημοπρασία δεύτερης τιμής. Αυτό έχει ως αποτέλεσμα

οι πιθανοί αγοραστές να μην μπορούν να κάνουν προσφορές μόνο για τα αντικείμενα που

πραγματικά θέλουν να αποκτήσουν, αλλά να πρέπει να ανταγωνιστούν και για αντικείμενα

τα οποία δεν επιθυμούν να αγοράσουν. Δηλαδή, η ζήτηση κάθε αντικειμένου αυξάνεται το

οποίο συνεπάγεται μεγαλύτερο κέρδος για τον πωλητή. Οι Emek et al. [2012] παρουσιάσαν
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αποτελέσματα πολυπλοκότητας σε ένα παρόμοιο πιθανοτικό μοντέλο, ενώ οι Miltersen and

Sheffet [2012] μελέτησαν κλασματικά σχήματα διαμέρισης για αποστολή σημάτων.

Τέλος, αξίζει να αναφέρουμε ότι η χρήση γραμμικού προγραμματισμού για την ανάλυση

αμιγώς συνδυαστικών αλγορίθμων είναι πλέον μια πολύ καλά ορισμένη τεχνική και έχει ήδη

αξιοποιηθεί σε πολλά διαφορετικά προβλήματα σχετικά με τοποθέτηση εγκαταστάσεων [Jain

et al., 2003], κάλυψη συνόλων [Athanassopoulos et al., 2009a,b, Caragiannis et al., 2013], ται-

ριάσματα άμεσης απόκρισης [Mahdian and Yan, 2011], μέγιστες διευθυνόμενες τομές [Feige

and Jozeph, 2015], και δρομολόγηση μήκους κύματος [Caragiannis, 2009].
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