Strategic games and equilibrium concepts

Alexandros Voudouris
University of Oxford

Prisoner's dilemma

- Two persons are caught by the police and are accused of a crime

Prisoner's dilemma

- Two persons are caught by the police and are accused of a crime
- Each of them has two options:
- confess the crime, or
- remain silent

Prisoner's dilemma

- Two persons are caught by the police and are accused of a crime
- Each of them has two options:
- confess the crime, or
- remain silent
- Every possible scenario (combination of actions of the two prisoners) yields some payoff/cost for them:

Prisoner's dilemma

- Two persons are caught by the police and are accused of a crime
- Each of them has two options:
- confess the crime, or
- remain silent
- Every possible scenario (combination of actions of the two prisoners) yields some payoff/cost for them:
- If both confess, they will go to prison for 3 years each

Prisoner's dilemma

- Two persons are caught by the police and are accused of a crime
- Each of them has two options:
- confess the crime, or
- remain silent
- Every possible scenario (combination of actions of the two prisoners) yields some payoff/cost for them:
- If both confess, they will go to prison for 3 years each
- If both remain silent, they will go to prison for only 1 year

Prisoner's dilemma

- Two persons are caught by the police and are accused of a crime
- Each of them has two options:
- confess the crime, or
- remain silent
- Every possible scenario (combination of actions of the two prisoners) yields some payoff/cost for them:
- If both confess, they will go to prison for 3 years each
- If both remain silent, they will go to prison for only 1 year
- If one confesses and the other remains silent, then the former will be set free and the latter will go to prison for 5 years

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

| confess | silent |
| :---: | :---: | :---: |
| confess | $-3,-3$ $0,-5$
 silent $-5,0$ |

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

	confess	silent
confess	$-3,-3$	$0,-5$
silent	$-5,0$	$-1,-1$

- How does the row-prisoner think in order to find the best action?

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

	confess	silent
confess	$-3,-3$	$0,-5$
silent	$-5,0$	$-1,-1$

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner confesses:

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

	confess
silent	
confess	$-3,-3$
silent	$0,-5$
	$-5,0$

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner confesses:
- confessing yields 3 years in prison

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

	confess	silent
confess	$-3,-3$	$0,-5$
silent	$-5,0$	$-1,-1$

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner confesses:
- confessing yields 3 years in prison
- remaining silent yields 5 years in prison

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

	confess	silent
confess	$-3,-3$	$0,-5$
silent	$-5,0$	$-1,-1$

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner confesses:
- confessing yields 3 years in prison
- remaining silent yields 5 years in prison
- best action = confess

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner remains silent:

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner remains silent:
- confessing yields 0 years in prison

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner remains silent:
- confessing yields 0 years in prison
- remaining silent yields 1 year in prison

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

- How does the row-prisoner think in order to find the best action?
- Assume that the column-prisoner remains silent:
- confessing yields 0 years in prison
- remaining silent yields 1 year in prison
- best action = confess

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

	confess	silent
confess	$-3,-3$	$0,-5$
silent	$-5,0$	$-1,-1$

- How does the row-prisoner think in order to find the best action?
- In any case, confessing is the best action, and the same holds for the column-prisoner due to symmetry

Prisoner's dilemma

- We can represent their payoffs using a bi-matrix

	confess	silent
confess	$-3,-3$	$0,-5$
silent	$-5,0$	$-1,-1$

- How does the row-prisoner think in order to find the best action?
- In any case, confessing is the best action, and the same holds for the column-prisoner due to symmetry
- Confessing is a dominant strategy for both prisoners since, whatever the other prisoner does, this action is always better

Strategic games in general

Strategic games in general

- A set of players

Strategic games in general

- A set of players
- Each player has a set of possible strategies (actions)

Strategic games in general

- A set of players
- Each player has a set of possible strategies (actions)
- Each state of the game (defined by a strategy per player) yields a payoff (or utility) to each player

Strategic games in general

- A set of players
- Each player has a set of possible strategies (actions)
- Each state of the game (defined by a strategy per player) yields a payoff (or utility) to each player
- Given the strategies of the other players, each player aims to select its strategy in order to maximize its utility
- Such a strategy is called a best response

Strategic games in general

- A set of players
- Each player has a set of possible strategies (actions)
- Each state of the game (defined by a strategy per player) yields a payoff (or utility) to each player
- Given the strategies of the other players, each player aims to select its strategy in order to maximize its utility
- Such a strategy is called a best response
- A state consisting of best responses is stable, and called a pure Nash equilibrium: no player would like to deviate and select a different strategy

Back to prisoner's dilemma

- Players = the two prisoners
- Strategies = \{confess, silent $\}$
- Possible states = \{(confess, confess), (confess, silent), (silent, confess), (silent, silent)\}
- Utilities given by the bi-matrix:

	confess	silent
confess	$-3,-3$	$0,-5$
silent	$-5,0$	$-1,-1$

- Confessing is a best response to any strategy of the other player
- (confess, confess) is a pure Nash equilibrium of the game

Battle of the sexes

- A couple (man and woman) want to decide what to do this evening; they can either attend a sports game or stay home and watch a movie
- They have different utilities for the two activities, but they would like to be together

Battle of the sexes

- A couple (man and woman) want to decide what to do this evening; they can either attend a sports game or stay home and watch a movie
- They have different utilities for the two activities, but they would like to be together

Battle of the sexes

- How does the woman think?

Battle of the sexes

- How does the woman think?
- If the man chooses sports, then she also prefers sports (3 vs. 2)

Battle of the sexes

- How does the woman think?
- If the man chooses sports, then she also prefers sports (3 vs. 2)
- If the man chooses movie, then she also prefers movie (6 vs. 1)

Battle of the sexes

- There is no dominant strategy for the woman (nor for the man)
- What is the equilibrium strategy profile then?

Battle of the sexes

- Is the state (movie, sports) an equilibrium?

Battle of the sexes

- Is the state (movie, sports) an equilibrium?
- No, the woman would prefer to unilaterally change her strategy to sports:
- the state (sports, sports) gives her utility 3, while now she only gets utility 2

Battle of the sexes

- Is the state (sports, sports) an equilibrium?

Battle of the sexes

- Is the state (sports, sports) an equilibrium?
- Yes, none of the two players has incentive to unilaterally change its strategy:
- a deviation to movie would give utility 1 to the man and 2 to the woman, compared to the utility of 6 and 3 they now get

Nash dynamics graph

- An easy way to graphically find Nash equilibria
- Built a graph containing a node per state
- A directed edge between two nodes represents the fact that there exists a player with a profitable unilateral deviation
- A node with only incoming edges corresponds to an equilibrium state: no player would like to deviate from there

Battle of the sexes

movie, sports
movie, movie

Battle of the sexes

Man improves from 1 to 6

movie, sports
movie, movie

Battle of the sexes

Battle of the sexes

Battle of the sexes

Chicken

Chicken

column improves from 0 to 1

Chicken

Matching pennies

Matching pennies

Mixed strategies

- Not all games have pure equilibria

Mixed strategies

- Not all games have pure equilibria
- What if we allow the players to randomize over their strategies?

Mixed strategies

- Not all games have pure equilibria
- What if we allow the players to randomize over their strategies?
- $S_{i}=$ set of pure strategies for player i

Mixed strategies

- Not all games have pure equilibria
- What if we allow the players to randomize over their strategies?
- $S_{i}=$ set of pure strategies for player i
- A mixed strategy for player i defines a probability $p_{i}(a)$ for each strategy $a \in S_{i}$ such that $\sum_{a \in S_{i}} p_{i}(a)=1$

Mixed strategies

- Not all games have pure equilibria
- What if we allow the players to randomize over their strategies?
- $S_{i}=$ set of pure strategies for player i
- A mixed strategy for player i defines a probability $p_{i}(a)$ for each strategy $a \in S_{i}$ such that $\sum_{a \in S_{i}} p_{i}(a)=1$
- The game is at a state $\boldsymbol{S}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with probability

$$
p(\boldsymbol{s})=p_{1}\left(s_{1}\right) \cdot p_{2}\left(s_{2}\right) \cdot \ldots \cdot p_{n}\left(s_{n}\right)=\prod_{i} p_{i}\left(s_{i}\right)
$$

Mixed strategies

- Not all games have pure equilibria
- What if we allow the players to randomize over their strategies?
- $S_{i}=$ set of pure strategies for player i
- A mixed strategy for player i defines a probability $p_{i}(a)$ for each strategy $a \in S_{i}$ such that $\sum_{a \in S_{i}} p_{i}(a)=1$
- The game is at a state $\boldsymbol{S}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with probability

$$
p(\boldsymbol{s})=p_{1}\left(s_{1}\right) \cdot p_{2}\left(s_{2}\right) \cdot \ldots \cdot p_{n}\left(s_{n}\right)=\prod_{i} p_{i}\left(s_{i}\right)
$$

- The expected utility of player i is then

$$
\mathbb{E}_{p}\left[u_{i}\right]=\sum_{\boldsymbol{s}} p(\boldsymbol{s}) \cdot u_{i}(\boldsymbol{s})
$$

Matching pennies

Matching pennies

- p (heads, heads) $=0.8 \cdot 0.4=0.32$
- p (heads, tails) $=0.8 \cdot 0.6=0.48$
- p (tails, heads) $=0.2 \cdot 0.4=0.08$
- p (tails, tails $)=0.2 \cdot 0.6=0.12$

Matching pennies

- p (heads, heads) $=0.8 \cdot 0.4=0.32$
- p (heads, tails) $=0.8 \cdot 0.6=0.48$
- p (tails, heads) $=0.2 \cdot 0.4=0.08$
- p (tails, tails) $=0.2 \cdot 0.6=0.12$
- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=0.32 \cdot 1+0.48 \cdot(-1)+0.08 \cdot(-1)+0.12 \cdot 1=-0.12$
- $\mathbb{E}_{p}\left[u_{0}\right]=0.32 \cdot(-1)+0.48 \cdot 1+0.08 \cdot 1+0.12 \cdot(-1)=0.12$

Mixed equilibria

- Mixed equilibrium: A profile of mixed strategies such that each player maximizes its expected utility, given the strategies of the other players

Mixed equilibria

- Mixed equilibrium: A profile of mixed strategies such that each player maximizes its expected utility, given the strategies of the other players

Theorem [Nash, 1951]
Every finite strategic game of n players has at least one mixed equilibrium

Mixed equilibria

- Mixed equilibrium: A profile of mixed strategies such that each player maximizes its expected utility, given the strategies of the other players

Theorem [Nash, 1951]
Every finite strategic game of n players has at least one mixed equilibrium

- Every pure equilibrium is also a mixed equilibrium
- Every pure strategy can be seen as a probability distribution over all strategies that assigns probability 1 to this one pure strategy

Matching Pennies: mixed equilibria

- Even player selects heads with probability x and tails with $1-x$
- Odd player selects heads with probability y and tails with $1-y$

Matching Pennies: mixed equilibria

- Even player selects heads with probability x and tails with $1-x$
- Odd player selects heads with probability y and tails with $1-y$
- p (heads, heads) $=x y$
- p (heads, tails $)=x(1-y)$
- p (tails, heads) $=(1-x) y$
- p (tails, tails $)=(1-x)(1-y)$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$

$$
=x y \cdot 1+x(1-y) \cdot(-1)+(1-x) y \cdot(-1)+(1-x)(1-y) \cdot 1
$$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$

$$
\begin{aligned}
& =x y \cdot 1+x(1-y) \cdot(-1)+(1-x) y \cdot(-1)+(1-x)(1-y) \cdot 1 \\
& =4 x y-2 x-2 y+1 \\
& =\boldsymbol{x}(\mathbf{4 y}-\mathbf{2})-\mathbf{2 y}+\mathbf{1}
\end{aligned}
$$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$

$$
\begin{aligned}
& =x y \cdot 1+x(1-y) \cdot(-1)+(1-x) y \cdot(-1)+(1-x)(1-y) \cdot 1 \\
& =4 x y-2 x-2 y+1 \\
& =x(4 y-2)-2 y+1
\end{aligned}
$$

- $\mathbb{E}_{p}\left[u_{0}\right]$

$$
\begin{aligned}
& =x y \cdot(-1)+x(1-y) \cdot 1+(1-x) y \cdot 1+(1-x)(1-y) \cdot(-1) \\
& =\boldsymbol{y}(\mathbf{2}-\mathbf{4 x})+\mathbf{2 x}-\mathbf{1}
\end{aligned}
$$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- The expected utility of each player is a linear function in terms of her corresponding probability

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- The expected utility of each player is a linear function in terms of her corresponding probability
- To analyze how a player is going to act, we need to see whether the slope of the linear function is negative or positive

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- The expected utility of each player is a linear function in terms of her corresponding probability
- To analyze how a player is going to act, we need to see whether the slope of the linear function is negative or positive
- Negative: the function is decreasing and the player aims to set a small value for the probability

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- The expected utility of each player is a linear function in terms of her corresponding probability
- To analyze how a player is going to act, we need to see whether the slope of the linear function is negative or positive
- Negative: the function is decreasing and the player aims to set a small value for the probability
- Positive: the function is increasing and the players aims to set a high value for the probability

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y<1 / 2$
\Rightarrow the slope $4 y-2$ is negative

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y<1 / 2$
\Rightarrow the slope $4 y-2$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is decreasing in \boldsymbol{x}

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y<1 / 2$
\Rightarrow the slope $4 y-2$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y<1 / 2$
\Rightarrow the slope $4 y-2$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=2$ of the odd player is positive

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y<1 / 2$
\Rightarrow the slope $4 y-2$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=2$ of the odd player is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{0}\right]$ is increasing in \boldsymbol{y}

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y<1 / 2$
\Rightarrow the slope $4 y-2$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=2$ of the odd player is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{0}\right]$ is increasing in \boldsymbol{y}
\Rightarrow odd player sets $\boldsymbol{y}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{0}\right]$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y<1 / 2$
\Rightarrow the slope $4 y-2$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=2$ of the odd player is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{0}\right]$ is increasing in \boldsymbol{y}
\Rightarrow odd player sets $\boldsymbol{y}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{o}}\right]$
\Rightarrow contradiction

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y>1 / 2$
\Rightarrow the slope $4 y-2$ is positive

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y>1 / 2$
\Rightarrow the slope $4 y-2$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is increasing in \boldsymbol{x}

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y>1 / 2$
\Rightarrow the slope $4 y-2$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is increasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y>1 / 2$
\Rightarrow the slope $4 y-2$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is increasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=-2$ of the odd player is negative

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y>1 / 2$
\Rightarrow the slope $4 y-2$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is increasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=-2$ of the odd player is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{0}\right]$ is decreasing in \boldsymbol{y}

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y>1 / 2$
\Rightarrow the slope $4 y-2$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is increasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=-2$ of the odd player is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{0}\right]$ is decreasing in \boldsymbol{y}
\Rightarrow odd player sets $\boldsymbol{y}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{0}\right]$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- Even player: the slope is $4 y-2$ and it depends on y, the probability with which the odd player selects heads
- $y>1 / 2$
\Rightarrow the slope $4 y-2$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$ is increasing in \boldsymbol{x}
\Rightarrow even player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]$
\Rightarrow the slope $2-4 x=-2$ of the odd player is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{0}\right]$ is decreasing in \boldsymbol{y}
\Rightarrow odd player sets $\boldsymbol{y}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{o}}\right]$
\Rightarrow contradiction

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- It must be $\boldsymbol{y}=\mathbf{1} / \mathbf{2}$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- It must be $\boldsymbol{y}=\mathbf{1} / \mathbf{2}$
- Following the same reasoning for the odd player, we can see that it must also be $\boldsymbol{x}=\mathbf{1} / \mathbf{2}$

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{0}\right]=y(2-4 x)+2 x-1$
- It must be $\boldsymbol{y}=\mathbf{1 / 2}$
- Following the same reasoning for the odd player, we can see that it must also be $\boldsymbol{x}=\mathbf{1} / \mathbf{2}$
- For these values of x and y both slopes are equal to 0 and the linear functions are maximized

Matching Pennies: mixed equilibria

- $\mathbb{E}_{p}\left[u_{\mathrm{e}}\right]=x(4 y-2)-2 y+1$
- $\mathbb{E}_{p}\left[u_{\mathrm{O}}\right]=y(2-4 x)+2 x-1$
- It must be $\boldsymbol{y}=\mathbf{1 / 2}$
- Following the same reasoning for the odd player, we can see that it must also be $\boldsymbol{x}=\mathbf{1} / \mathbf{2}$
- For these values of x and y both slopes are equal to 0 and the linear functions are maximized
- The pair $(x, y)=(1 / 2,1 / 2)$ corresponds to a mixed equilibrium, which is actually unique for this game

Unbalanced coordination

- Two players with two possible strategies A and B
- If both players select A, they get one point
- If both of them select B, they get two points
- If the select different strategies, they get zero points

Unbalanced coordination

- Two players with two possible strategies A and B
- If both players select A, they get one point
- If both of them select B, they get two points
- If the select different strategies, they get zero points

- Easy to verify that (A, A) and (B, B) are pure equilibria
- Are there any other mixed equilibria?

Unbalanced coordination

- row player selects A with probability x and B with $1-x$
- col player selects A with probability y and B with $1-y$
- $p(\mathrm{~A}, \mathrm{~A})=x y$
- $p(\mathrm{~A}, \mathrm{~B})=x(1-y)$
- $p(\mathrm{~B}, \mathrm{~A})=(1-x) y$
- $p(\mathrm{~B}, \mathrm{~B})=(1-x)(1-y)$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$

$$
\begin{aligned}
& =x y \cdot 1+x(1-y) \cdot 0+(1-x) y \cdot 0+(1-x)(1-y) \cdot 2 \\
& =\boldsymbol{x}(3 \boldsymbol{y}-2)+2-2 \boldsymbol{y}
\end{aligned}
$$

- $\mathbb{E}_{p}\left[u_{\mathrm{c}}\right]$

$$
\begin{aligned}
& =x y \cdot 1+x(1-y) \cdot 0+(1-x) y \cdot 0+(1-x)(1-y) \cdot 2 \\
& =\boldsymbol{y}(3 \boldsymbol{x}-\mathbf{2})+\mathbf{2}-\mathbf{2 y}
\end{aligned}
$$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{r}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{r}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y<2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is negative

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y<2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is decreasing in \boldsymbol{x}

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y<2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is negative \Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y<2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is negative \Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is negative

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y<2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is negative \Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{c}}\right]$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is decreasing in \boldsymbol{y}

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y<2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=-2$ of $\mathbb{E}_{p}\left[u_{c}\right]$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is decreasing in \boldsymbol{y}
\Rightarrow column player sets $\boldsymbol{y}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y<2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is decreasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=-2$ of $\mathbb{E}_{p}\left[u_{c}\right]$ is negative
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is decreasing in \boldsymbol{y}
\Rightarrow column player sets $\boldsymbol{y}=\mathbf{0}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$
- $(x, y)=(0,0)$ is a mixed equilibrium
- We already knew that: it corresponds to the pure equilibrium (A, A)

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{r}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y>2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is positive

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y>2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{r}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is increasing in \boldsymbol{x}

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y>2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is increasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y>2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is positive \Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is increasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=1$ of $\mathbb{E}_{p}\left[u_{\mathrm{c}}\right]$ is positive

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y>2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is increasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=1$ of $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is increasing in \boldsymbol{y}

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y>2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{r}\right]$ is increasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=1$ of $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is increasing in \boldsymbol{y}
\Rightarrow column player sets $\boldsymbol{y}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- $y>2 / 3$
\Rightarrow the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is increasing in \boldsymbol{x}
\Rightarrow row player sets $\boldsymbol{x}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{r}\right]$
\Rightarrow the slope $3 x-2=1$ of $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is positive
\Rightarrow the function $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is increasing in \boldsymbol{y}
\Rightarrow column player sets $\boldsymbol{y}=\mathbf{1}$ to maximize $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$
- $(x, y)=(1,1)$ is a mixed equilibrium corresponding to the pure equilibrium (B, B)

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{r}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- For $x<2 / 3$ and $x>2 / 3$ we will reach to the same conclusion

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- For $x<2 / 3$ and $x>2 / 3$ we will reach to the same conclusion
- It remains to see what is going on for $x=2 / 3$ and $y=2 / 3$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- For $x<2 / 3$ and $x>2 / 3$ we will reach to the same conclusion
- It remains to see what is going on for $\boldsymbol{x}=2 / 3$ and $\boldsymbol{y}=2 / 3$
- For $y=2 / 3$ the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is zero and $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is maximized by any choice of x, including $x=2 / 3$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- For $x<2 / 3$ and $x>2 / 3$ we will reach to the same conclusion
- It remains to see what is going on for $x=2 / 3$ and $y=2 / 3$
- For $y=2 / 3$ the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is zero and $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is maximized by any choice of x, including $x=2 / 3$
- For $x=2 / 3$ the slope $3 x-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is zero and $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is maximized by any choice of y, including $y=2 / 3$

Unbalanced coordination

- $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]=x(3 y-2)+2-2 y$
- $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]=y(3 x-2)+2-2 x$
- For $x<2 / 3$ and $x>2 / 3$ we will reach to the same conclusion
- It remains to see what is going on for $x=2 / 3$ and $y=2 / 3$
- For $y=2 / 3$ the slope $3 y-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is zero and $\mathbb{E}_{p}\left[u_{\mathrm{r}}\right]$ is maximized by any choice of x, including $x=2 / 3$
- For $x=2 / 3$ the slope $3 x-2$ of $\mathbb{E}_{p}\left[u_{\mathrm{c}}\right]$ is zero and $\mathbb{E}_{p}\left[u_{\mathrm{C}}\right]$ is maximized by any choice of y, including $y=2 / 3$
- $(x, y)=(2 / 3,2 / 3)$ is a fully mixed equilibrium of the game

Summary

Summary

- Dominant strategy: a strategy that is always the best response

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies
- Mixed equilibrium: every player selects a mixed strategy that is a best response to the mixed strategies of the other players

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies
- Mixed equilibrium: every player selects a mixed strategy that is a best response to the mixed strategies of the other players
- There is always at least one mixed equilibrium (finite games)

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies
- Mixed equilibrium: every player selects a mixed strategy that is a best response to the mixed strategies of the other players
- There is always at least one mixed equilibrium (finite games)
- Every pure equilibrium is a mixed equilibrium

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies
- Mixed equilibrium: every player selects a mixed strategy that is a best response to the mixed strategies of the other players
- There is always at least one mixed equilibrium (finite games)
- Every pure equilibrium is a mixed equilibrium
- Computing mixed equilibria in $\mathbf{2 x 2}$ games: define a parameterized probability distribution per player,

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies
- Mixed equilibrium: every player selects a mixed strategy that is a best response to the mixed strategies of the other players
- There is always at least one mixed equilibrium (finite games)
- Every pure equilibrium is a mixed equilibrium
- Computing mixed equilibria in $\mathbf{2 x 2}$ games: define a parameterized probability distribution per player, compute the probability distribution over the states of the game,

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies
- Mixed equilibrium: every player selects a mixed strategy that is a best response to the mixed strategies of the other players
- There is always at least one mixed equilibrium (finite games)
- Every pure equilibrium is a mixed equilibrium
- Computing mixed equilibria in 2×2 games: define a parameterized probability distribution per player, compute the probability distribution over the states of the game, compute the expected utility of each player and write it as a linear function of its parameter,

Summary

- Dominant strategy: a strategy that is always the best response
- Pure equilibrium: every player selects a best response, and has no incentive to deviate
- Pure equilibria are not guaranteed to exist
- Mixed strategy: a probability distribution over the set of strategies
- Mixed equilibrium: every player selects a mixed strategy that is a best response to the mixed strategies of the other players
- There is always at least one mixed equilibrium (finite games)
- Every pure equilibrium is a mixed equilibrium
- Computing mixed equilibria in 2×2 games: define a parameterized probability distribution per player, compute the probability distribution over the states of the game, compute the expected utility of each player and write it as a linear function of its parameter, argue about the slope (negative, positive, zero)

Bibliography

- Handbook of Algorithmic Game Theory
- http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
- Networks, Crowds and Markets
- http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf
- Twenty Lectures on Algorithmic Game Theory
- http://timroughgarden.org/notes.html

