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Prisoner’s dilemma

• Two persons are caught by the police and are accused of a crime

• Each of them has two options: 

– confess the crime, or 

– remain silent

• Every possible scenario (combination of actions of the two prisoners) 
yields some payoff/cost for them:

– If both confess, they will go to prison for 3 years each

– If both remain silent, they will go to prison for only 1 year

– If one confesses and the other remains silent, then the former will 
be set free and the latter will go to prison for 5 years 
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• How does the row-prisoner think in order to find the best action?
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• We can represent their payoffs using a bi-matrix
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– confessing yields 0 years in prison 

– remaining silent yields 1 year in prison
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Prisoner’s dilemma

• We can represent their payoffs using a bi-matrix

• How does the row-prisoner think in order to find the best action?

• Assume that the column-prisoner remains silent:

– confessing yields 0 years in prison 

– remaining silent yields 1 year in prison

– best action = confess
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Prisoner’s dilemma

• We can represent their payoffs using a bi-matrix

• How does the row-prisoner think in order to find the best action?

• In any case, confessing is the best action, and the same holds for the 
column-prisoner due to symmetry
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Prisoner’s dilemma

• We can represent their payoffs using a bi-matrix

• How does the row-prisoner think in order to find the best action?

• In any case, confessing is the best action, and the same holds for the 
column-prisoner due to symmetry

• Confessing is a dominant strategy for both prisoners since, whatever 
the other prisoner does, this action is always better
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-5, 0 -1, -1

confess silent

confess

silent
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Strategic games in general

• A set of players

• Each player has a set of possible strategies (actions)

• Each state of the game (defined by a strategy per player) yields a 
payoff (or utility) to each player

• Given the strategies of the other players, each player aims to select its 
strategy in order to maximize its utility

– Such a strategy is called a best response

• A state consisting of best responses is stable, and called a pure Nash 
equilibrium: no player would like to deviate and select a different 
strategy



Back to prisoner’s dilemma

• Players = the two prisoners

• Strategies = {confess, silent}

• Possible states = {(confess, confess), (confess, silent), (silent, confess), 
(silent, silent)}

• Utilities given by the bi-matrix:

• Confessing is a best response to any strategy of the other player

• (confess, confess) is a pure Nash equilibrium of the game
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• How does the woman think?

• If the man chooses sports, then she also prefers sports (3 vs. 2)

• If the man chooses movie, then she also prefers movie (6 vs. 1)



Battle of the sexes

• There is no dominant strategy for the woman (nor for the man)

• What is the equilibrium strategy profile then?
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Battle of the sexes

• Is the state (movie, sports) an equilibrium?

• No, the woman would prefer to unilaterally change her strategy to 
sports:

– the state (sports, sports) gives her utility 3, while now she only 
gets utility 2
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Battle of the sexes

• Is the state (sports, sports) an equilibrium?

• Yes, none of the two players has incentive to unilaterally change its 
strategy: 

– a deviation to movie would give utility 1 to the man and 2 to the 
woman, compared to the utility of 6 and 3 they now get

3, 6 1, 1

2, 2 6, 3

sports movie

sports
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Nash dynamics graph

• An easy way to graphically find Nash equilibria

• Built a graph containing a node per state

• A directed edge between two nodes represents the fact that there 
exists a player with a profitable unilateral deviation 

• A node with only incoming edges corresponds to an equilibrium state: 
no player would like to deviate from there
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Mixed strategies

• Not all games have pure equilibria

• What if we allow the players to randomize over their strategies?

• 𝑆𝑖 = set of pure strategies for player 𝑖

• A mixed strategy for player 𝑖 defines a probability 𝑝𝑖(𝑎) for each 
strategy 𝑎 ∈ 𝑆𝑖 such that σ𝑎∈𝑆𝑖

𝑝𝑖(𝑎) = 1

• The game is at a state 𝒔 = 𝑠1, 𝑠2, … , 𝑠𝑛 with probability  

• The expected utility of player 𝑖 is then

𝑝 𝒔 = 𝑝1 𝑠1 ∙ 𝑝2 𝑠2 ∙ … ∙ 𝑝𝑛 𝑠𝑛 = ෑ

𝑖

𝑝𝑖(𝑠𝑖)

𝔼𝑝[𝑢𝑖] = 

𝒔

𝑝 𝒔 ∙ 𝑢𝑖(𝒔)
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Matching pennies

• 𝑝(heads, heads) = 0.8 ∙ 0.4 = 0.32

• 𝑝 heads, tails = 0.8 ∙ 0.6 = 0.48

• 𝑝(tails, heads) = 0.2 ∙ 0.4 = 0.08

• 𝑝(tails, tails) = 0.2 ∙ 0.6 = 0.12
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Matching pennies

• 𝑝(heads, heads) = 0.8 ∙ 0.4 = 0.32

• 𝑝 heads, tails = 0.8 ∙ 0.6 = 0.48

• 𝑝(tails, heads) = 0.2 ∙ 0.4 = 0.08

• 𝑝(tails, tails) = 0.2 ∙ 0.6 = 0.12

• 𝔼𝑝 𝑢e = 0.32 ∙ 1 + 0.48 ∙ −1 + 0.08 ∙ −1 + 0.12 ∙ 1 = −0.12

• 𝔼𝑝 𝑢o = 0.32 ∙ (−1) + 0.48 ∙ 1 + 0.08 ∙ 1 + 0.12 ∙ (−1) = 0.12
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Mixed equilibria

• Mixed equilibrium: A profile of mixed strategies such that each player 
maximizes its expected utility, given the strategies of the other 
players

• Every pure equilibrium is also a mixed equilibrium

– Every pure strategy can be seen as a probability distribution over 
all strategies that assigns probability 1 to this one pure strategy

Theorem [Nash, 1951]

Every finite strategic game of 𝑛 players has at least one mixed 
equilibrium
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• Even player selects heads with probability 𝑥 and tails with 1 − 𝑥

• Odd player selects heads with probability 𝑦 and tails with 1 − 𝑦
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Matching Pennies: mixed equilibria

• Even player selects heads with probability 𝑥 and tails with 1 − 𝑥

• Odd player selects heads with probability 𝑦 and tails with 1 − 𝑦

• 𝑝(heads, heads) = 𝑥𝑦

• 𝑝 heads, tails = 𝑥(1 − 𝑦)

• 𝑝(tails, heads) = 1 − 𝑥 𝑦

• 𝑝(tails, tails) = (1 − 𝑥)(1 − 𝑦)
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• 𝔼𝑝 𝑢e
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= 𝒙 𝟒𝒚 − 𝟐 − 𝟐𝒚 + 𝟏
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Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e
= 𝑥𝑦 ∙ 1 + 𝑥 1 − 𝑦 ∙ −1 + 1 − 𝑥 𝑦 ∙ −1 + 1 − 𝑥 1 − 𝑦 ∙ 1
= 4𝑥𝑦 − 2𝑥 − 2𝑦 + 1
= 𝒙 𝟒𝒚 − 𝟐 − 𝟐𝒚 + 𝟏

• 𝔼𝑝 𝑢o
= 𝑥𝑦 ∙ −1 + 𝑥 1 − 𝑦 ∙ 1 + 1 − 𝑥 𝑦 ∙ 1 + 1 − 𝑥 1 − 𝑦 ∙ −1
= 𝒚 𝟐 − 𝟒𝒙 + 𝟐𝒙 − 𝟏
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Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• The expected utility of each player is a linear function in terms of her 
corresponding probability 

• To analyze how a player is going to act, we need to see whether the 
slope of the linear function is negative or positive

• Negative: the function is decreasing and the player aims to set a small 
value for the probability

• Positive: the function is increasing and the players aims to set a high 
value for the probability
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• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 < 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is negative 

⇨ the function 𝔼𝑝 𝑢e is decreasing in 𝒙

⇨ even player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = 2 of the odd player is positive 
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• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 < 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is negative 

⇨ the function 𝔼𝑝 𝑢e is decreasing in 𝒙

⇨ even player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = 2 of the odd player is positive 

⇨ the function 𝔼𝑝 𝑢o is increasing in 𝒚



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 < 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is negative 

⇨ the function 𝔼𝑝 𝑢e is decreasing in 𝒙

⇨ even player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = 2 of the odd player is positive 

⇨ the function 𝔼𝑝 𝑢o is increasing in 𝒚

⇨ odd player sets 𝒚 = 𝟏 to maximize 𝔼𝑝 𝑢o



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 < 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is negative 

⇨ the function 𝔼𝑝 𝑢e is decreasing in 𝒙

⇨ even player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = 2 of the odd player is positive 

⇨ the function 𝔼𝑝 𝑢o is increasing in 𝒚

⇨ odd player sets 𝒚 = 𝟏 to maximize 𝔼𝑝 𝑢o
⇨ contradiction
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• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1
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• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 > 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is positive



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 > 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is positive

⇨ the function 𝔼𝑝 𝑢e is increasing in 𝒙



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 > 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is positive

⇨ the function 𝔼𝑝 𝑢e is increasing in 𝒙

⇨ even player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢e



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 > 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is positive

⇨ the function 𝔼𝑝 𝑢e is increasing in 𝒙

⇨ even player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = −2 of the odd player is negative



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 > 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is positive

⇨ the function 𝔼𝑝 𝑢e is increasing in 𝒙

⇨ even player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = −2 of the odd player is negative

⇨ the function 𝔼𝑝 𝑢o is decreasing in 𝒚



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 > 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is positive

⇨ the function 𝔼𝑝 𝑢e is increasing in 𝒙

⇨ even player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = −2 of the odd player is negative

⇨ the function 𝔼𝑝 𝑢o is decreasing in 𝒚

⇨ odd player sets 𝒚 = 𝟎 to maximize 𝔼𝑝 𝑢o



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• Even player: the slope is  4𝑦 − 2 and it depends on 𝑦, the probability 
with which the odd player selects heads

• 𝒚 > 𝟏/𝟐

⇨ the slope 4𝑦 − 2 is positive

⇨ the function 𝔼𝑝 𝑢e is increasing in 𝒙

⇨ even player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢e

⇨ the slope 2 − 4𝑥 = −2 of the odd player is negative

⇨ the function 𝔼𝑝 𝑢o is decreasing in 𝒚

⇨ odd player sets 𝒚 = 𝟎 to maximize 𝔼𝑝 𝑢o
⇨ contradiction



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• It must be 𝒚 = 𝟏/𝟐



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• It must be 𝒚 = 𝟏/𝟐

• Following the same reasoning for the odd player, we can see that it 
must also be 𝒙 = 𝟏/𝟐



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• It must be 𝒚 = 𝟏/𝟐

• Following the same reasoning for the odd player, we can see that it 
must also be 𝒙 = 𝟏/𝟐

• For these values of 𝑥 and 𝑦 both slopes are equal to 0 and the linear 
functions are maximized



Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• It must be 𝒚 = 𝟏/𝟐

• Following the same reasoning for the odd player, we can see that it 
must also be 𝒙 = 𝟏/𝟐

• For these values of 𝑥 and 𝑦 both slopes are equal to 0 and the linear 
functions are maximized

• The pair (𝑥, 𝑦) = (1/2, 1/2) corresponds to a mixed equilibrium, 
which is actually unique for this game



Unbalanced coordination

• Two players with two possible strategies A and B

• If both players select A, they get one point

• If both of them select B, they get two points

• If the select different strategies, they get zero points

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player



Unbalanced coordination

• Two players with two possible strategies A and B

• If both players select A, they get one point

• If both of them select B, they get two points

• If the select different strategies, they get zero points

• Easy to verify that (A, A) and (B, B) are pure equilibria

• Are there any other mixed equilibria?

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player



Unbalanced coordination

• row player selects A with probability 𝑥 and B with 1 − 𝑥

• col player selects A with probability 𝑦 and B with 1 − 𝑦

• 𝑝(A, A) = 𝑥𝑦

• 𝑝 A, B = 𝑥(1 − 𝑦)

• 𝑝(B, A) = 1 − 𝑥 𝑦

• 𝑝(B, B) = (1 − 𝑥)(1 − 𝑦)

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player



Unbalanced coordination

• 𝔼𝑝 𝑢r
= 𝑥𝑦 ∙ 1 + 𝑥 1 − 𝑦 ∙ 0 + 1 − 𝑥 𝑦 ∙ 0 + 1 − 𝑥 1 − 𝑦 ∙ 2
= 𝒙(𝟑𝒚 − 𝟐) + 𝟐 − 𝟐𝒚

• 𝔼𝑝 𝑢c
= 𝑥𝑦 ∙ 1 + 𝑥 1 − 𝑦 ∙ 0 + 1 − 𝑥 𝑦 ∙ 0 + 1 − 𝑥 1 − 𝑦 ∙ 2
= 𝒚 𝟑𝒙 − 𝟐 + 𝟐 − 𝟐𝒚

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player

𝑦 1 − 𝑦

𝑥

1 − 𝑥



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙

⇨ row player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢r



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙

⇨ row player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = −2 of 𝔼𝑝 𝑢c is negative 



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙

⇨ row player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = −2 of 𝔼𝑝 𝑢c is negative 

⇨ the function 𝔼𝑝 𝑢c is decreasing in 𝒚



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙

⇨ row player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = −2 of 𝔼𝑝 𝑢c is negative 

⇨ the function 𝔼𝑝 𝑢c is decreasing in 𝒚

⇨ column player sets 𝒚 = 𝟎 to maximize 𝔼𝑝 𝑢c



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙

⇨ row player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = −2 of 𝔼𝑝 𝑢c is negative 

⇨ the function 𝔼𝑝 𝑢c is decreasing in 𝒚

⇨ column player sets 𝒚 = 𝟎 to maximize 𝔼𝑝 𝑢c

• (𝑥, 𝑦) = (0, 0) is a mixed equilibrium 

• We already knew that: it corresponds to the pure equilibrium (A, A)



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive 



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive

⇨ the function 𝔼𝑝 𝑢c is increasing in 𝒚



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive 

⇨ the function 𝔼𝑝 𝑢c is increasing in 𝒚

⇨ column player sets 𝒚 = 𝟏 to maximize 𝔼𝑝 𝑢c



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive

⇨ the function 𝔼𝑝 𝑢c is increasing in 𝒚

⇨ column player sets 𝒚 = 𝟏 to maximize 𝔼𝑝 𝑢c

• (𝑥, 𝑦) = (1, 1) is a mixed equilibrium corresponding to the pure 
equilibrium (B, B)



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 

• It remains to see what is going on for 𝒙 = 𝟐/𝟑 and 𝒚 = 𝟐/𝟑



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 

• It remains to see what is going on for 𝒙 = 𝟐/𝟑 and 𝒚 = 𝟐/𝟑

• For 𝑦 = 2/3 the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is zero and 𝔼𝑝 𝑢r is 

maximized by any choice of 𝑥, including 𝑥 = 2/3



Unbalanced coordination
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