Congestion games

Alexandros Voudouris
University of Oxford

General definition

- n players: $N=\{1, \ldots, n\}$
- m resources: $E=\{1, \ldots, m\}$

General definition

- n players: $N=\{1, \ldots, n\}$
- m resources: $E=\{1, \ldots, m\}$
- For each resource $e \in E$ there is a latency function $f_{e}: \mathbb{N} \rightarrow \mathbb{R}^{+}$
- $f_{e}(x)$ is non-decreasing in x and represents the latency experienced by each of the x players using resource e

General definition

- n players: $N=\{1, \ldots, n\}$
- m resources: $E=\{1, \ldots, m\}$
- For each resource $e \in E$ there is a latency function $f_{e}: \mathbb{N} \rightarrow \mathbb{R}^{+}$
- $f_{e}(x)$ is non-decreasing in x and represents the latency experienced by each of the x players using resource e
- Each player i has a set of strategies $S_{i} \subseteq 2^{E}$, each of which is a subset of recourses that the player can use

General definition

- n players: $N=\{1, \ldots, n\}$
- m resources: $E=\{1, \ldots, m\}$
- For each resource $e \in E$ there is a latency function $f_{e}: \mathbb{N} \rightarrow \mathbb{R}^{+}$
- $f_{e}(x)$ is non-decreasing in x and represents the latency experienced by each of the x players using resource e
- Each player i has a set of strategies $S_{i} \subseteq 2^{E}$, each of which is a subset of recourses that the player can use
- A state $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ is an instance of the game, where each player has chosen a particular strategy $s_{i} \in S_{i}$

General definition

- The load $n_{e}(\boldsymbol{s})$ of a resource $e \in E$ in a state \boldsymbol{s} is equal to the number of players using e :

$$
n_{e}(\boldsymbol{s})=\left|\left\{i \in N: e \in s_{i}\right\}\right|
$$

General definition

- The load $n_{e}(\boldsymbol{s})$ of a resource $e \in E$ in a state \boldsymbol{s} is equal to the number of players using e :

$$
n_{e}(\boldsymbol{s})=\left|\left\{i \in N: e \in s_{i}\right\}\right|
$$

- The cost of player i in state \boldsymbol{s} is equal to the total latency that she experiences from all resources that she uses:

$$
\operatorname{cost}_{i}(\boldsymbol{s})=\sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right)
$$

Network congestion games

Network congestion games

- A network defined by a directed graph G

Network congestion games

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_{i} to a sink node t_{i}

Network congestion games

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_{i} to a sink node t_{i}
- Each directed edge of G corresponds to a resource and has a latency function representing the cost of using it in terms of the number of players that select it

Network congestion games

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_{i} to a sink node t_{i}
- Each directed edge of G corresponds to a resource and has a latency function representing the cost of using it in terms of the number of players that select it
- The set of strategies S_{i} of player i consists of all paths from z_{i} to t_{i}

Network congestion games

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_{i} to a sink node t_{i}
- Each directed edge of G corresponds to a resource and has a latency function representing the cost of using it in terms of the number of players that select it
- The set of strategies S_{i} of player i consists of all paths from z_{i} to t_{i}
- If all players have the same source node z and the same sink node t, then they all have the same set of possible strategies and the game is symmetric

Network congestion games: example

Network congestion games: example

Network congestion games: example

Network congestion games: example

Network congestion games: example

Network congestion games: example

Network congestion games: example

Network congestion games: example

Network congestion games: example

Load balancing games

Load balancing games

- A set of machines

Load balancing games

- A set of machines
- The players have jobs that require the same processing time (weight)

Load balancing games

- A set of machines
- The players have jobs that require the same processing time (weight)
- Each player aims to assign her job to a machine so that to minimize the waiting time

Load balancing games

- A set of machines
- The players have jobs that require the same processing time (weight)
- Each player aims to assign her job to a machine so that to minimize the waiting time
- The machines can process in parallel all jobs that have been assigned to them, but have different processing speeds

Load balancing games

- A set of machines
- The players have jobs that require the same processing time (weight)
- Each player aims to assign her job to a machine so that to minimize the waiting time
- The machines can process in parallel all jobs that have been assigned to them, but have different processing speeds
- If x players choose the same machine of speed v then the cost of each such player is equal to $f_{v}(x)=x / v$

Load balancing games: example

- Two machines M_{1} with speed $v_{1}=1$, and M_{2} with speed $v_{2}=2$
- Two players, both with jobs that require 1 hour of processing

Load balancing games: example

- Two machines M_{1} with speed $v_{1}=1$, and M_{2} with speed $v_{2}=2$
- Two players, both with jobs that require 1 hour of processing
- If both select M_{1} then each of them has a cost of 2
- If both select M_{2} then each of them has a cost of 1
- If one selects M_{1} and one selects M_{2} then the first has cost 1 and the latter has cost $1 / 2$

Load balancing games: example

- Two machines M_{1} with speed $v_{1}=1$, and M_{2} with speed $v_{2}=2$
- Two players, both with jobs that require 1 hour of processing
- If both select M_{1} then each of them has a cost of 2
- If both select M_{2} then each of them has a cost of 1
- If one selects M_{1} and one selects M_{2} then the first has cost 1 and the latter has cost $1 / 2$

	M_{1}	M_{2}
M_{1}	2,2	$1,1 / 2$
M_{2}	$1 / 2,1$	1,1

- Every state besides $\left(M_{1}, M_{1}\right)$ is an equilibrium

Load balancing games: example

- What if M_{1} has speed $v_{1}=1 / 2$?

Load balancing games: example

- What if M_{1} has speed $v_{1}=1 / 2$?

M_{1} M_{2} M_{1} 4,4 M_{2} $1 / 2,2$ 1,1

- It is a dominant strategy for every player to select M_{2}

Potential functions

- Let Φ be a function which takes as input a state of a game and returns a real value

Potential functions

- Let Φ be a function which takes as input a state of a game and returns a real value
- Φ is a potential function if for every two states $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ that differ on the strategy of a single player i, the quantities $\Phi\left(\boldsymbol{s}_{\mathbf{1}}\right)-\Phi\left(\boldsymbol{s}_{\mathbf{2}}\right)$ and $\operatorname{cost}_{i}\left(\boldsymbol{s}_{1}\right)-\operatorname{cost}_{i}\left(\boldsymbol{s}_{2}\right)$ have the same sign:

$$
\left(\Phi\left(s_{1}\right)-\Phi\left(s_{2}\right)\right)\left(\operatorname{cost}_{i}\left(s_{1}\right)-\operatorname{cost}_{i}\left(s_{2}\right)\right)>0
$$

Potential functions: example

- Nash dynamics: each circle is a state, each arrow corresponds to a deviation by a single player who changes strategy to reduce her cost

Potential functions: example

- Nash dynamics: each circle is a state, each arrow corresponds to a deviation by a single player who changes strategy to reduce her cost
- The orange node is an equilibrium of the game

Potential functions: example

- Nash dynamics: each circle is a state, each arrow corresponds to a deviation by a single player who changes strategy to reduce her cost
- The orange node is an equilibrium of the game
- To define a potential function,
 we want to define a value for each state which is smaller than the value of the states pointing at it

Potential functions: example

- Nash dynamics: each circle is a state, each arrow corresponds to a deviation by a single player who changes strategy to reduce her cost
- The orange node is an equilibrium of the game
- To define a potential function,
 we want to define a value for each state which is smaller than the value of the states pointing at it

Potential functions: example

- Let's change the dynamics so that there is no equilibrium

Potential functions: example

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?

Potential functions: example

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9

Potential functions: example

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9
- Change 15 to 8

Potential functions: example

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9
- Change 15 to 8
- Change 10 to 7

Potential functions: example

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9
- Change 15 to 8
- Change 10 to 7
- The cycle between these nodes will not allow us to find
 correct values for the function to be a potential

Potential functions: example

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9
- Change 15 to 8
- Change 10 to 7
- The cycle between these nodes will not allow us to find
 correct values for the function to be a potential
- We must have $x>y>z>x$, a contradiction

Existence of equilibrium

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

Existence of equilibrium

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

- Let Φ be the potential function of the game

Existence of equilibrium

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state \boldsymbol{s} for which Φ is minimized

Existence of equilibrium

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state \boldsymbol{s} for which Φ is minimized
- Let \boldsymbol{s}^{\prime} be any other state of the game that differs from \boldsymbol{s} only in the strategy of a single player i

Existence of equilibrium

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state \boldsymbol{s} for which Φ is minimized
- Let \boldsymbol{s}^{\prime} be any other state of the game that differs from \boldsymbol{s} only in the strategy of a single player i
- We have that $\Phi\left(s^{\prime}\right) \geq \Phi(\boldsymbol{s})$

Existence of equilibrium

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state \boldsymbol{s} for which Φ is minimized
- Let \boldsymbol{s}^{\prime} be any other state of the game that differs from \boldsymbol{s} only in the strategy of a single player i
- We have that $\Phi\left(\boldsymbol{s}^{\prime}\right) \geq \Phi(\boldsymbol{s})$
- By the definition of the potential we obtain $\operatorname{cost}_{i}\left(\boldsymbol{s}^{\prime}\right) \geq \operatorname{cost}_{i}(\boldsymbol{s})$

Existence of equilibrium

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state \boldsymbol{s} for which Φ is minimized
- Let \boldsymbol{s}^{\prime} be any other state of the game that differs from \boldsymbol{s} only in the strategy of a single player i
- We have that $\Phi\left(\boldsymbol{s}^{\prime}\right) \geq \Phi(\boldsymbol{s})$
- By the definition of the potential we obtain $\operatorname{cost}_{i}\left(\boldsymbol{s}^{\prime}\right) \geq \operatorname{cost}_{i}(\boldsymbol{s})$
- Since this holds for every player, \boldsymbol{s} must be an equilibrium

Rosenthal's function

- For the class of congestion games, Rosenthal [1973] defined the function:

$$
\Phi(\boldsymbol{s})=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)
$$

- Recall:
- $n_{e}(\boldsymbol{s})$ is the load of resource e in state \boldsymbol{s} (number of players using e)
- $f_{e}(x)$ is the latency that x players experience by using e

Rosenthal's function

- For the class of congestion games, Rosenthal [1973] defined the function:

$$
\Phi(\boldsymbol{s})=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)
$$

- Recall:
- $n_{e}(\boldsymbol{s})$ is the load of resource e in state \boldsymbol{s} (number of players using e)
- $f_{e}(x)$ is the latency that x players experience by using e
- We will show that Rosenthal's function is a potential function for congestion games

Rosenthal's function

- For the class of congestion games, Rosenthal [1973] defined the function:

$$
\Phi(\boldsymbol{s})=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)
$$

- Recall:
- $n_{e}(\boldsymbol{s})$ is the load of resource e in state \boldsymbol{s} (number of players using e)
- $f_{e}(x)$ is the latency that x players experience by using e
- We will show that Rosenthal's function is a potential function for congestion games \Rightarrow Every congestion game has at least one pure equilibrium

Rosenthal's function

Theorem

Rosenthal's function is a potential function for every congestion game

Rosenthal's function

Theorem

Rosenthal's function is a potential function for every congestion game

- Let \boldsymbol{s} and \boldsymbol{s}^{\prime} be two states of the game that differ only on the strategy of a single player i

Rosenthal's function

Theorem

Rosenthal's function is a potential function for every congestion game

- Let \boldsymbol{s} and \boldsymbol{s}^{\prime} be two states of the game that differ only on the strategy of a single player i
- We want to show that the quantities $\Phi(\boldsymbol{s})-\Phi\left(\boldsymbol{s}^{\prime}\right)$ and $\operatorname{cost}_{i}(\boldsymbol{s})$ $\operatorname{cost}_{i}\left(\boldsymbol{s}^{\prime}\right)$ have the same sign
- Actually we will prove that these two quantities are equal, which means that Rosenthal's function is an exact potential

Rosenthal's function

Theorem

Rosenthal's function is a potential function for every congestion game

- Let \boldsymbol{s} and \boldsymbol{s}^{\prime} be two states of the game that differ only on the strategy of a single player i
- We want to show that the quantities $\Phi(\boldsymbol{s})-\Phi\left(\boldsymbol{s}^{\prime}\right)$ and $\operatorname{cost}_{i}(\boldsymbol{s})$ $\operatorname{cost}_{i}\left(\boldsymbol{s}^{\prime}\right)$ have the same sign
- Actually we will prove that these two quantities are equal, which means that Rosenthal's function is an exact potential
- s_{i} is the strategy of player i in state \boldsymbol{s}
- s_{i}^{\prime} is the strategy of player i in state \boldsymbol{s}^{\prime}

Rosenthal's function

$$
\Phi(s)-\Phi\left(s^{\prime}\right)=\sum_{e \in \in} \sum_{x=1}^{n_{c}(s)} f_{e}(x)-\sum_{e \in \in}^{n_{e}} \sum_{x=1}^{n_{c}\left(s^{\prime}\right)} f_{e}(x)
$$

Rosenthal's function

$$
\begin{aligned}
\Phi(\boldsymbol{s})-\Phi\left(\boldsymbol{s}^{\prime}\right) & =\sum_{e \in E} \sum_{x=1}^{n_{e}(s)} f_{e}(x)-\sum_{e \in E} \sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x) \\
& =\sum_{e \in E}\left(\sum_{x=1}^{n_{e}(s)} f_{e}(x)-\sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x)\right)
\end{aligned}
$$

Rosenthal's function

$$
\begin{aligned}
\Phi(\boldsymbol{s})-\Phi\left(\boldsymbol{s}^{\prime}\right) & =\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)-\sum_{e \in E} \sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x) \\
& =\sum_{e \in E}\left(\sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)-\sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x)\right)
\end{aligned}
$$

- We partition the set of all resources E into different subsets:
- $e \notin s_{i} \cup s_{i}^{\prime}$
- $e \in s_{i} \cap s_{i}^{\prime}$
- $e \in s_{i} \backslash s_{i}^{\prime}$
- $e \in s_{i}^{\prime} \backslash s_{i}$

Rosenthal's function

- $e \notin s_{i} \cup s_{i}^{\prime}$
- player i does not use e in any of the two states
- $n_{e}(\boldsymbol{s})=n_{e}\left(\boldsymbol{s}^{\prime}\right)$
- $\sum_{x=1}^{n_{e}(s)} f_{e}(x)-\sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x)=0$

Rosenthal's function

- $e \notin s_{i} \cup s_{i}^{\prime}$
- player i does not use e in any of the two states
- $n_{e}(\boldsymbol{s})=n_{e}\left(\boldsymbol{s}^{\prime}\right)$
- $\sum_{x=1}^{n_{e}(s)} f_{e}(x)-\sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x)=0$
- $e \in s_{i} \cap s_{i}^{\prime}$
- player i uses e in both states
- $n_{e}(\boldsymbol{s})=n_{e}\left(\boldsymbol{s}^{\prime}\right)$
- $\sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)-\sum_{x=1}^{n_{e}\left(\boldsymbol{s}^{\prime}\right)} f_{e}(x)=0=f_{e}\left(n_{e}(\boldsymbol{s})\right)-f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right)$

Rosenthal's function

- $e \in s_{i} \backslash s_{i}^{\prime}$
- player i uses e only in state \boldsymbol{s}
- $n_{e}(\boldsymbol{s})=n_{e}\left(\boldsymbol{s}^{\prime}\right)+1$
- $\sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)-\sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x)=f_{e}\left(n_{e}(s)\right)$

Rosenthal's function

- $e \in s_{i} \backslash s_{i}^{\prime}$
- player i uses e only in state \boldsymbol{s}
- $n_{e}(\boldsymbol{s})=n_{e}\left(\boldsymbol{s}^{\prime}\right)+1$
- $\sum_{x=1}^{n_{e}(s)} f_{e}(x)-\sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x)=f_{e}\left(n_{e}(s)\right)$
- $e \in s_{i}^{\prime} \backslash s_{i}$
- player i uses e only in state \boldsymbol{s}^{\prime}
- $n_{e}(\boldsymbol{s})=n_{e}\left(\boldsymbol{s}^{\prime}\right)-1$
- $\sum_{x=1}^{n_{e}(s)} f_{e}(x)-\sum_{x=1}^{n_{e}\left(s^{\prime}\right)} f_{e}(x)=-f_{e}\left(n_{e}\left(s^{\prime}\right)\right)$

Rosenthal's function

- Putting all these together, we have

$$
\begin{aligned}
\Phi(\boldsymbol{s})-\Phi\left(\boldsymbol{s}^{\prime}\right)= & \sum_{e \in s_{i} \cap s_{i}^{\prime}}\left(f_{e}\left(n_{e}(\boldsymbol{s})\right)-f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right)\right) \\
& +\sum_{e \in s_{i} \backslash s_{i}^{\prime}} f_{e}\left(n_{e}(\boldsymbol{s})\right)-\sum_{e \in s_{i}^{\prime} \backslash s_{i}} f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right)
\end{aligned}
$$

Rosenthal's function

- Putting all these together, we have

$$
\begin{aligned}
\Phi(\boldsymbol{s})-\Phi\left(\boldsymbol{s}^{\prime}\right)= & \sum_{e \in s_{i} \cap s_{i}^{\prime}}\left(f_{e}\left(n_{e}(\boldsymbol{s})\right)-f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right)\right) \\
& +\sum_{e \in s_{i} \backslash s_{i}^{\prime}} f_{e}\left(n_{e}(\boldsymbol{s})\right)-\sum_{e \in s_{i}^{\prime} \backslash s_{i}} f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right) \\
= & \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right)-\sum_{e \in s_{i}^{\prime}} f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right)
\end{aligned}
$$

Rosenthal's function

- Putting all these together, we have

$$
\begin{aligned}
\Phi(\boldsymbol{s})-\Phi\left(\boldsymbol{s}^{\prime}\right)= & \sum_{e \in s_{i} \cap s_{i}^{\prime}}\left(f_{e}\left(n_{e}(\boldsymbol{s})\right)-f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right)\right) \\
& +\sum_{e \in s_{i} \backslash s_{i}^{\prime}} f_{e}\left(n_{e}(\boldsymbol{s})\right)-\sum_{e \in s_{i}^{\prime} \backslash s_{i}} f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right) \\
= & \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right)-\sum_{e \in s_{i}^{\prime}} f_{e}\left(n_{e}\left(\boldsymbol{s}^{\prime}\right)\right) \\
= & \operatorname{cost}_{i}(\boldsymbol{s})-\operatorname{cost}_{i}\left(\boldsymbol{s}^{\prime}\right)
\end{aligned}
$$

Summary

Summary

- Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses

Summary

- Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses
- Potential functions: for every pair of states that differ on the strategy of a single player, the difference in the value of the potential and the difference of the cost of this player have the same sign

Summary

- Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses
- Potential functions: for every pair of states that differ on the strategy of a single player, the difference in the value of the potential and the difference of the cost of this player have the same sign
- If a game admits a potential function, it has a pure equilibrium

Summary

- Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses
- Potential functions: for every pair of states that differ on the strategy of a single player, the difference in the value of the potential and the difference of the cost of this player have the same sign
- If a game admits a potential function, it has a pure equilibrium
- Rosenthal's function is a potential function for congestion games

