Congestion games

Alexandros Voudouris

University of Oxford

- $n \text{ players}: N = \{1, ..., n\}$
- m resources: $E = \{1, \dots, m\}$

- $n \text{ players}: N = \{1, ..., n\}$
- m resources: $E = \{1, ..., m\}$
- For each resource $e \in E$ there is a **latency function** $f_e : \mathbb{N} \to \mathbb{R}^+$
 - $-f_e(x)$ is non-decreasing in x and represents the latency experienced by each of the x players using resource e

- $n \text{ players}: N = \{1, ..., n\}$
- m resources: $E = \{1, ..., m\}$
- For each resource $e \in E$ there is a **latency function** $f_e : \mathbb{N} \to \mathbb{R}^+$
 - $-f_e(x)$ is non-decreasing in x and represents the latency experienced by each of the x players using resource e
- Each player i has a set of strategies $S_i \subseteq 2^E$, each of which is a subset of recourses that the player can use

- $n \text{ players}: N = \{1, ..., n\}$
- m resources: $E = \{1, ..., m\}$
- For each resource $e \in E$ there is a **latency function** $f_e : \mathbb{N} \to \mathbb{R}^+$
 - $-f_e(x)$ is non-decreasing in x and represents the latency experienced by each of the x players using resource e
- Each player i has a set of strategies $S_i \subseteq 2^E$, each of which is a subset of recourses that the player can use
- A state $\mathbf{s} = (s_1, ..., s_n)$ is an instance of the game, where each player has chosen a particular strategy $s_i \in S_i$

• The **load** $n_e(s)$ of a resource $e \in E$ in a state s is equal to the number of players using e:

$$n_e(\mathbf{s}) = |\{i \in N \colon e \in s_i\}|$$

• The **load** $n_e(s)$ of a resource $e \in E$ in a state s is equal to the number of players using e:

$$n_e(\mathbf{s}) = |\{i \in N : e \in s_i\}|$$

• The **cost** of player *i* in state *s* is equal to the total latency that she experiences from all resources that she uses:

$$cost_i(\mathbf{s}) = \sum_{e \in s_i} f_e(n_e(\mathbf{s}))$$

• A network defined by a directed graph G

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_i to a sink node t_i

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_i to a sink node t_i
- Each directed edge of G corresponds to a resource and has a latency function representing the cost of using it in terms of the number of players that select it

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_i to a sink node t_i
- Each directed edge of G corresponds to a resource and has a latency function representing the cost of using it in terms of the number of players that select it
- The set of strategies S_i of player i consists of all paths from z_i to t_i

- A network defined by a directed graph G
- Player i wants to transmit data from a source node z_i to a sink node t_i
- Each directed edge of G corresponds to a resource and has a latency function representing the cost of using it in terms of the number of players that select it
- The set of strategies S_i of player i consists of all paths from z_i to t_i

• If all players have the same source node z and the same sink node t, then they all have the same set of possible strategies and the game is symmetric

• A set of machines

- A set of machines
- The players have jobs that require the same processing time (weight)

- A set of machines
- The players have jobs that require the same processing time (weight)
- Each player aims to assign her job to a machine so that to minimize the waiting time

- A set of machines
- The players have jobs that require the same processing time (weight)
- Each player aims to assign her job to a machine so that to minimize the waiting time
- The machines can process in parallel all jobs that have been assigned to them, but have different processing speeds

- A set of machines
- The players have jobs that require the same processing time (weight)
- Each player aims to assign her job to a machine so that to minimize the waiting time
- The machines can process in parallel all jobs that have been assigned to them, but have different processing speeds
- If x players choose the same machine of speed v then the cost of each such player is equal to $f_v(x) = x/v$

- Two machines M_1 with speed $v_1=1$, and M_2 with speed $v_2=2$
- Two players, both with jobs that require 1 hour of processing

- Two machines M_1 with speed $v_1=1$, and M_2 with speed $v_2=2$
- Two players, both with jobs that require 1 hour of processing
- If both select M_1 then each of them has a cost of 2
- If both select M_2 then each of them has a cost of 1
- If one selects M_1 and one selects M_2 then the first has cost 1 and the latter has cost 1/2

	M_1	M_2
M_1	2,2	1, 1/2
M_2	1/2,1	1, 1

- Two machines M_1 with speed $v_1=1$, and M_2 with speed $v_2=2$
- Two players, both with jobs that require 1 hour of processing
- If both select M_1 then each of them has a cost of 2
- If both select M_2 then each of them has a cost of 1
- If one selects M_1 and one selects M_2 then the first has cost 1 and the latter has cost 1/2

	M_1	M_2
M_1	2,2	1, 1/2
M_2	1/2,1	1, 1

• Every state besides (M_1, M_1) is an equilibrium

• What if M_1 has speed $v_1 = 1/2$?

• What if M_1 has speed $v_1 = 1/2$?

	M_1	M_2
<i>M</i> ₁	4,4	2, 1/2
M_2	1/2,2	1, 1

• It is a dominant strategy for every player to select M_2

Potential functions

• Let Φ be a function which takes as input a state of a game and returns a real value

Potential functions

- Let Φ be a function which takes as input a state of a game and returns a real value
- Φ is a **potential function** if for every two states s_1 and s_2 that differ on the strategy of a single player i, the quantities $\Phi(s_1) \Phi(s_2)$ and $\text{cost}_i(s_1) \text{cost}_i(s_2)$ have the same sign:

$$\left(\Phi(\mathbf{s_1}) - \Phi(\mathbf{s_2})\right) \left(\cot_i(\mathbf{s_1}) - \cot_i(\mathbf{s_2})\right) > 0$$

Potential functions: example

Nash dynamics:
 each circle is a state,
 each arrow corresponds to a
 deviation by a single player
 who changes strategy to
 reduce her cost

- Nash dynamics:
 each circle is a state,
 each arrow corresponds to a
 deviation by a single player
 who changes strategy to
 reduce her cost
- The orange node is an equilibrium of the game

- Nash dynamics:
 each circle is a state,
 each arrow corresponds to a
 deviation by a single player
 who changes strategy to
 reduce her cost
- The orange node is an equilibrium of the game
- To define a potential function, we want to define a value for each state which is smaller than the value of the states pointing at it

- Nash dynamics:
 each circle is a state,
 each arrow corresponds to a
 deviation by a single player
 who changes strategy to
 reduce her cost
- The orange node is an equilibrium of the game
- To define a potential function, we want to define a value for each state which is smaller than the value of the states pointing at it

 Let's change the dynamics so that there is no equilibrium

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential;
 can we fix this?

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential;
 can we fix this?
- Change 20 to 9
- Change 15 to 8

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential;
 can we fix this?
- Change 20 to 9
- Change 15 to 8
- Change 10 to 7

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9
- Change 15 to 8
- Change 10 to 7
- The cycle between these nodes will not allow us to find correct values for the function to be a potential

- Let's change the dynamics so that there is no equilibrium
- This is not a valid potential; can we fix this?
- Change 20 to 9
- Change 15 to 8
- Change 10 to 7
- The cycle between these nodes will not allow us to find correct values for the function to be a potential
- We must have x > y > z > x, a contradiction

Theorem

Theorem

If a finite game admits a potential function then it has at least one pure equilibrium

• Let Φ be the potential function of the game

Theorem

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state s for which Φ is minimized

Theorem

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state s for which Φ is minimized
- Let s' be any other state of the game that differs from s only in the strategy of a single player i

Theorem

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state s for which Φ is minimized
- Let s' be any other state of the game that differs from s only in the strategy of a single player i
- We have that $\Phi(s') \ge \Phi(s)$

Theorem

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state s for which Φ is minimized
- Let s' be any other state of the game that differs from s only in the strategy of a single player i
- We have that $\Phi(s') \ge \Phi(s)$
- By the definition of the potential we obtain $\operatorname{cost}_i(s') \geq \operatorname{cost}_i(s)$

Theorem

- Let Φ be the potential function of the game
- Since the game has a finite number of states, there exists a state s for which Φ is minimized
- Let s' be any other state of the game that differs from s only in the strategy of a single player i
- We have that $\Phi(s') \ge \Phi(s)$
- By the definition of the potential we obtain $cost_i(s') \ge cost_i(s)$
- Since this holds for every player, s must be an equilibrium

 For the class of congestion games, Rosenthal [1973] defined the function:

$$\Phi(\mathbf{s}) = \sum_{e \in E} \sum_{x=1}^{n_e(\mathbf{s})} f_e(x)$$

- Recall:
 - $-n_e(s)$ is the load of resource e in state s (number of players using e)
 - $-f_e(x)$ is the latency that x players experience by using e

 For the class of congestion games, Rosenthal [1973] defined the function:

$$\Phi(\mathbf{s}) = \sum_{e \in E} \sum_{x=1}^{n_e(\mathbf{s})} f_e(x)$$

- Recall:
 - $-n_e(s)$ is the load of resource e in state s (number of players using e)
 - $-f_e(x)$ is the latency that x players experience by using e
- We will show that Rosenthal's function is a potential function for congestion games

 For the class of congestion games, Rosenthal [1973] defined the function:

$$\Phi(\mathbf{s}) = \sum_{e \in E} \sum_{x=1}^{n_e(\mathbf{s})} f_e(x)$$

- Recall:
 - $-n_e(s)$ is the load of resource e in state s (number of players using e)
 - $-f_e(x)$ is the latency that x players experience by using e
- We will show that Rosenthal's function is a potential function for congestion games ⇒ Every congestion game has at least one pure equilibrium

Theorem

Rosenthal's function is a potential function for every congestion game

Theorem

Rosenthal's function is a potential function for every congestion game

• Let s and s' be two states of the game that differ only on the strategy of a single player i

Theorem

Rosenthal's function is a potential function for every congestion game

- Let s and s' be two states of the game that differ only on the strategy of a single player i
- We want to show that the quantities $\Phi(s) \Phi(s')$ and $cost_i(s) cost_i(s')$ have the same sign
- Actually we will prove that these two quantities are equal, which means that Rosenthal's function is an exact potential

Theorem

Rosenthal's function is a potential function for every congestion game

- Let s and s' be two states of the game that differ only on the strategy of a single player i
- We want to show that the quantities $\Phi(s) \Phi(s')$ and $cost_i(s) cost_i(s')$ have the same sign
- Actually we will prove that these two quantities are equal, which means that Rosenthal's function is an exact potential
- s_i is the strategy of player i in state s
- s_i' is the strategy of player i in state s'

$$\Phi(s) - \Phi(s') = \sum_{e \in E} \sum_{x=1}^{n_e(s)} f_e(x) - \sum_{e \in E} \sum_{x=1}^{n_e(s')} f_e(x)$$

$$\Phi(s) - \Phi(s') = \sum_{e \in E} \sum_{x=1}^{n_e(s)} f_e(x) - \sum_{e \in E} \sum_{x=1}^{n_e(s')} f_e(x)$$
$$= \sum_{e \in E} \left(\sum_{x=1}^{n_e(s)} f_e(x) - \sum_{x=1}^{n_e(s')} f_e(x) \right)$$

$$\Phi(s) - \Phi(s') = \sum_{e \in E} \sum_{x=1}^{n_e(s)} f_e(x) - \sum_{e \in E} \sum_{x=1}^{n_e(s')} f_e(x)$$
$$= \sum_{e \in E} \left(\sum_{x=1}^{n_e(s)} f_e(x) - \sum_{x=1}^{n_e(s')} f_e(x) \right)$$

- We partition the set of all resources E into different subsets:
 - $e \notin s_i \cup s_i'$
 - $e \in s_i \cap s_i'$
 - $e \in s_i \setminus s_i'$
 - $e \in s_i' \setminus s_i$

- $e \notin s_i \cup s'_i$
 - player i does not use e in any of the two states
 - $n_e(\mathbf{s}) = n_e(\mathbf{s}')$
 - $\sum_{x=1}^{n_e(s)} f_e(x) \sum_{x=1}^{n_e(s')} f_e(x) = 0$

- $e \notin s_i \cup s'_i$
 - player i does not use e in any of the two states
 - $\bullet \quad n_e(s) = n_e(s')$
 - $\sum_{x=1}^{n_e(s)} f_e(x) \sum_{x=1}^{n_e(s')} f_e(x) = 0$
- $e \in s_i \cap s_i'$
 - player i uses e in both states
 - $\bullet \quad n_e(s) = n_e(s')$
 - $\sum_{x=1}^{n_e(s)} f_e(x) \sum_{x=1}^{n_e(s')} f_e(x) = 0 = f_e(n_e(s)) f_e(n_e(s'))$

- $e \in s_i \setminus s'_i$
 - player i uses e only in state s
 - $n_e(s) = n_e(s') + 1$
 - $\sum_{x=1}^{n_e(s)} f_e(x) \sum_{x=1}^{n_e(s')} f_e(x) = f_e(n_e(s))$

- $e \in s_i \setminus s'_i$
 - player i uses e only in state s
 - $n_e(s) = n_e(s') + 1$
 - $\sum_{x=1}^{n_e(s)} f_e(x) \sum_{x=1}^{n_e(s')} f_e(x) = f_e(n_e(s))$
- $e \in s'_i \setminus s_i$
 - player i uses e only in state s'
 - $n_e(s) = n_e(s') 1$
 - $\sum_{x=1}^{n_e(s)} f_e(x) \sum_{x=1}^{n_e(s')} f_e(x) = -f_e(n_e(s'))$

Putting all these together, we have

$$\Phi(\mathbf{s}) - \Phi(\mathbf{s}') = \sum_{e \in s_i \cap s_i'} \left(f_e(n_e(\mathbf{s})) - f_e(n_e(\mathbf{s}')) \right) + \sum_{e \in s_i \setminus s_i'} f_e(n_e(\mathbf{s})) - \sum_{e \in s_i' \setminus s_i} f_e(n_e(\mathbf{s}'))$$

Putting all these together, we have

$$\Phi(\mathbf{s}) - \Phi(\mathbf{s}') = \sum_{e \in s_i \cap s_i'} \left(f_e(n_e(\mathbf{s})) - f_e(n_e(\mathbf{s}')) \right)$$

$$+ \sum_{e \in s_i \setminus s_i'} f_e(n_e(\mathbf{s})) - \sum_{e \in s_i' \setminus s_i} f_e(n_e(\mathbf{s}'))$$

$$= \sum_{e \in s_i} f_e(n_e(\mathbf{s})) - \sum_{e \in s_i'} f_e(n_e(\mathbf{s}'))$$

Putting all these together, we have

$$\Phi(\mathbf{s}) - \Phi(\mathbf{s}') = \sum_{e \in s_i \cap s_i'} \left(f_e(n_e(\mathbf{s})) - f_e(n_e(\mathbf{s}')) \right)$$

$$+ \sum_{e \in s_i \setminus s_i'} f_e(n_e(\mathbf{s})) - \sum_{e \in s_i' \setminus s_i} f_e(n_e(\mathbf{s}'))$$

$$= \sum_{e \in s_i} f_e(n_e(\mathbf{s})) - \sum_{e \in s_i'} f_e(n_e(\mathbf{s}'))$$

$$= \cot_i(\mathbf{s}) - \cot_i(\mathbf{s}')$$

 Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses

- Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses
- **Potential functions:** for every pair of states that differ on the strategy of a single player, the difference in the value of the potential and the difference of the cost of this player have the same sign

- Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses
- **Potential functions:** for every pair of states that differ on the strategy of a single player, the difference in the value of the potential and the difference of the cost of this player have the same sign
- If a game admits a potential function, it has a pure equilibrium

- Congestion games: resources with latencies that depend on the number of players using them, strategies are subsets of resources, the cost of a player is the total latency she experiences from the resources she uses
- **Potential functions:** for every pair of states that differ on the strategy of a single player, the difference in the value of the potential and the difference of the cost of this player have the same sign
- If a game admits a potential function, it has a pure equilibrium
- Rosenthal's function is a potential function for congestion games