Efficiency at equilibrium

Alexandros Voudouris
University of Oxford

Efficiency at equilibrium?

- Focus on congestion games

Efficiency at equilibrium?

- Focus on congestion games
- In each state, every player has some cost depending on the strategies of all players

Efficiency at equilibrium?

- Focus on congestion games
- In each state, every player has some cost depending on the strategies of all players
- We can measure the efficiency of a state \boldsymbol{s} as the total cost of all players (the sum of their costs), which we term social cost:

$$
\mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s})
$$

Efficiency at equilibrium?

- Focus on congestion games
- In each state, every player has some cost depending on the strategies of all players
- We can measure the efficiency of a state \boldsymbol{s} as the total cost of all players (the sum of their costs), which we term social cost:

$$
\operatorname{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s})
$$

- Now, we can ask the following questions: which state of the game minimizes the social cost? Is it an equilibrium? If not, then what is the difference between the social cost of an equilibrium and the minimum possible social cost?

Load balancing: Example 1

- Two players and two machines with latencies $f_{1}(x)=x$ and $f_{2}(x)=$ $(2+\epsilon) x$, where ϵ is a very small positive constant (like $\epsilon=0.0001$)

Load balancing: Example 1

- Two players and two machines with latencies $f_{1}(x)=x$ and $f_{2}(x)=$ $(2+\epsilon) x$, where ϵ is a very small positive constant (like $\epsilon=0.0001$)

- $\left(M_{1}, M_{1}\right)$ is the only equilibrium of the game, with social cost 4

Load balancing: Example 1

- Two players and two machines with latencies $f_{1}(x)=x$ and $f_{2}(x)=$ $(2+\epsilon) x$, where ϵ is a very small positive constant (like $\epsilon=0.0001$)

- $\left(M_{1}, M_{1}\right)$ is the only equilibrium of the game, with social cost 4
- The states $\left(M_{1}, M_{2}\right)$ and $\left(M_{2}, M_{1}\right)$ however are the optimal ones with social cost $3+\epsilon$

Load balancing: Example 1

- Two players and two machines with latencies $f_{1}(x)=x$ and $f_{2}(x)=$ $(2+\epsilon) x$, where ϵ is a very small positive constant (like $\epsilon=0.0001$)

- $\left(M_{1}, M_{1}\right)$ is the only equilibrium of the game, with social cost 4
- The states $\left(M_{1}, M_{2}\right)$ and $\left(M_{2}, M_{1}\right)$ however are the optimal ones with social cost $3+\epsilon$
- The strategic behavior of the players does not allow them to reach the optimal state of the game

Price of stability and price of anarchy

- These notions allow us to quantify how far away from optimality the social cost of equilibria can be

Price of stability and price of anarchy

- These notions allow us to quantify how far away from optimality the social cost of equilibria can be
- $N E=$ set of all equilibrium states of the game

Price of stability and price of anarchy

- These notions allow us to quantify how far away from optimality the social cost of equilibria can be
- NE = set of all equilibrium states of the game
- $\boldsymbol{s}_{O P T} \in \arg \min _{\boldsymbol{s}} \mathrm{SC}(\boldsymbol{s})=$ state of the game with minimum social cost

Price of stability and price of anarchy

- These notions allow us to quantify how far away from optimality the social cost of equilibria can be
- $\mathrm{NE}=$ set of all equilibrium states of the game
- $\boldsymbol{s}_{O P T} \in \arg \min _{\boldsymbol{s}} \mathrm{SC}(\boldsymbol{s})=$ state of the game with minimum social cost

$$
\operatorname{PoS}=\min _{\boldsymbol{s} \in \mathrm{NE}} \frac{\operatorname{SC}(\boldsymbol{s})}{\operatorname{SC}\left(\boldsymbol{s}_{O P T}\right)} \quad \mathrm{PoA}=\max _{\boldsymbol{s} \in \mathrm{NE}} \frac{\operatorname{SC}(\boldsymbol{s})}{\operatorname{SC}\left(\boldsymbol{s}_{O P T}\right)}
$$

Price of stability and price of anarchy

- These notions allow us to quantify how far away from optimality the social cost of equilibria can be
- NE = set of all equilibrium states of the game
- $\boldsymbol{s}_{O P T} \in \arg \min _{\boldsymbol{s}} \mathrm{SC}(\boldsymbol{s})=$ state of the game with minimum social cost

$$
\operatorname{PoS}=\min _{\boldsymbol{s} \in \mathrm{NE}} \frac{\operatorname{SC}(\boldsymbol{s})}{\operatorname{SC}\left(\boldsymbol{s}_{O P T}\right)} \quad \operatorname{PoA}=\max _{\boldsymbol{s} \in \mathrm{NE}} \frac{\operatorname{SC}(\boldsymbol{s})}{\operatorname{SC}\left(\boldsymbol{s}_{O P T}\right)}
$$

- The price of stability is an optimistic measure: it considers the best equilibrium (with minimum social cost)
- The price of anarchy is a pessimistic measure: it considers the worst equilibrium (with maximum social cost)

Load balancing: Example 1

- $\left(M_{1}, M_{1}\right)$ is the only equilibrium of the game, with social cost 4
- The states $\left(M_{1}, M_{2}\right)$ and $\left(M_{2}, M_{1}\right)$ are the optimal ones with social cost $3+\epsilon$

$$
\mathrm{PoS}=\mathrm{PoA}=\frac{4}{3+\epsilon}
$$

Load balancing: Example 2

- Change the latency of the second machine to $f_{2}(x)=(2-\epsilon) x$

- $\left(M_{1}, M_{2}\right)$ and $\left(M_{2}, M_{1}\right)$ are both equilibrium states and have optimal social cost of $3-\epsilon$

$$
\operatorname{PoS}=\operatorname{PoA}=\frac{3-\epsilon}{3-\epsilon}=1
$$

Load balancing: Example 3

- Change the latency of the second machine to $f_{2}(x)=2 x$

	M_{1}	M_{2}
M_{1}	2,2	1,2
M_{2}	2,1	4,4

- There are three equilibrium states: $\left(M_{1}, M_{1}\right),\left(M_{1}, M_{2}\right)$ and $\left(M_{2}, M_{1}\right)$
- $\left(M_{1}, M_{1}\right)$ has social cost 4 , while $\left(M_{1}, M_{2}\right)$ and $\left(M_{2}, M_{1}\right)$ have social cost 3 and are the optimal states

$$
\operatorname{PoS}=\frac{3}{3}=1 \quad \operatorname{PoA}=\frac{4}{3}
$$

Linear congestion games

- Each resource e has a linear latency function: $f_{e}(x)=a_{e} x+b_{e}$ with $a_{e}, b_{e} \geq 0$

Linear congestion games

- Each resource e has a linear latency function: $f_{e}(x)=a_{e} x+b_{e}$ with $a_{e}, b_{e} \geq 0$
- Recall Rosenthal's potential function:

$$
\Phi(\boldsymbol{s})=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)
$$

$-n_{e}(\boldsymbol{s})$ is the load of e, equal to the number of players using it

Linear congestion games

- Each resource e has a linear latency function: $f_{e}(x)=a_{e} x+b_{e}$ with $a_{e}, b_{e} \geq 0$
- Recall Rosenthal's potential function:

$$
\Phi(\boldsymbol{s})=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)
$$

- $n_{e}(\boldsymbol{s})$ is the load of e, equal to the number of players using it
- We will show bounds on the price of stability and the price of anarchy for this special class of congestion games
- We want these bounds to be close to 1 to guarantee high efficiency

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \operatorname{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \operatorname{SC}(\boldsymbol{s})
$$

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \operatorname{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \operatorname{SC}(\boldsymbol{s})
$$

- Now, start a sequence of unilateral improving deviations from the optimal state $\boldsymbol{s}_{\text {OPT }}$ (with minimum social cost)

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \operatorname{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \operatorname{SC}(\boldsymbol{s})
$$

- Now, start a sequence of unilateral improving deviations from the optimal state $\boldsymbol{s}_{O P T}$ (with minimum social cost)
- Since the game admits a potential, we know that the players will eventually reach an equilibrium state \boldsymbol{s}

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \operatorname{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \operatorname{SC}(\boldsymbol{s})
$$

- Now, start a sequence of unilateral improving deviations from the optimal state $\boldsymbol{s}_{O P T}$ (with minimum social cost)
- Since the game admits a potential, we know that the players will eventually reach an equilibrium state \boldsymbol{s}
- Each deviation decreases the cost of the player that deviates, and thus we know that $\Phi(\boldsymbol{s}) \leq \Phi\left(\boldsymbol{s}_{\text {OPT }}\right)$

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \mathrm{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \mathrm{SC}(\boldsymbol{s})
$$

- Now, start a sequence of unilateral improving deviations from the optimal state $\boldsymbol{s}_{O P T}$ (with minimum social cost)
- Since the game admits a potential, we know that the players will eventually reach an equilibrium state \boldsymbol{s}
- Each deviation decreases the cost of the player that deviates, and thus we know that $\Phi(\boldsymbol{s}) \leq \Phi\left(\boldsymbol{s}_{\text {OPT }}\right)$

$$
\mathrm{SC}(\boldsymbol{s}) \leq \frac{1}{\lambda} \cdot \Phi(s)
$$

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \mathrm{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \mathrm{SC}(\boldsymbol{s})
$$

- Now, start a sequence of unilateral improving deviations from the optimal state $\boldsymbol{s}_{O P T}$ (with minimum social cost)
- Since the game admits a potential, we know that the players will eventually reach an equilibrium state \boldsymbol{s}
- Each deviation decreases the cost of the player that deviates, and thus we know that $\Phi(\boldsymbol{s}) \leq \Phi\left(\boldsymbol{s}_{\text {OPT }}\right)$

$$
\mathrm{SC}(\boldsymbol{s}) \leq \frac{1}{\lambda} \cdot \Phi(s) \leq \frac{1}{\lambda} \cdot \Phi\left(s_{O P T}\right)
$$

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \mathrm{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \mathrm{SC}(\boldsymbol{s})
$$

- Now, start a sequence of unilateral improving deviations from the optimal state $\boldsymbol{s}_{O P T}$ (with minimum social cost)
- Since the game admits a potential, we know that the players will eventually reach an equilibrium state \boldsymbol{s}
- Each deviation decreases the cost of the player that deviates, and thus we know that $\Phi(\boldsymbol{s}) \leq \Phi\left(\boldsymbol{s}_{\text {OPT }}\right)$

$$
\operatorname{SC}(\boldsymbol{s}) \leq \frac{1}{\lambda} \cdot \Phi(\boldsymbol{s}) \leq \frac{1}{\lambda} \cdot \Phi\left(\boldsymbol{s}_{O P T}\right) \leq \frac{\mu}{\lambda} \cdot \operatorname{SC}\left(\boldsymbol{s}_{O P T}\right)
$$

PoS bounds for potential games

- Usually, we can relate the potential function with the social cost
- Assume that for some positive parameters λ and μ we can prove that

$$
\lambda \cdot \mathrm{SC}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \mu \cdot \mathrm{SC}(\boldsymbol{s})
$$

- Now, start a sequence of unilateral improving deviations from the optimal state $\boldsymbol{s}_{O P T}$ (with minimum social cost)
- Since the game admits a potential, we know that the players will eventually reach an equilibrium state \boldsymbol{s}
- Each deviation decreases the cost of the player that deviates, and thus we know that $\Phi(\boldsymbol{s}) \leq \Phi\left(\boldsymbol{s}_{\text {OPT }}\right)$

$$
\operatorname{SC}(\boldsymbol{s}) \leq \frac{1}{\lambda} \cdot \Phi(\boldsymbol{s}) \leq \frac{1}{\lambda} \cdot \Phi\left(\boldsymbol{s}_{O P T}\right) \leq \frac{\mu}{\lambda} \cdot \operatorname{SC}\left(\boldsymbol{s}_{O P T}\right) \Rightarrow \operatorname{PoS} \leq \frac{\mu}{\lambda}
$$

Linear congestion games: PoS

Theorem

The price of stability of linear congestion games is at most 2

Linear congestion games: PoS

Theorem

The price of stability of linear congestion games is at most 2

- All we need to show is that there exist parameters λ and μ such that $\mu / \lambda=2$

Linear congestion games: PoS

Theorem

The price of stability of linear congestion games is at most 2

- All we need to show is that there exist parameters λ and μ such that $\mu / \lambda=2$
- In particular we will show that $\lambda=1 / 2$ and $\mu=1$:

$$
\frac{1}{2} \cdot \mathrm{SC}(s) \leq \Phi(s) \leq \mathrm{SC}(s)
$$

Linear congestion games: PoS

$$
\mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s})
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot f_{e}\left(n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \operatorname{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot\left(a_{e} n_{e}(\boldsymbol{s})+b_{e}\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot\left(a_{e} n_{e}(\boldsymbol{s})+b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot\left(a_{e} n_{e}(\boldsymbol{s})+b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

$$
\Phi(s)=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x)
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot\left(a_{e} n_{e}(\boldsymbol{s})+b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi(s)=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x) \\
& =\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})}\left(a_{e} x+b_{e}\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot\left(a_{e} n_{e}(\boldsymbol{s})+b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi(s)=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x) \\
& =\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})}\left(a_{e} x+b_{e}\right) \\
& =\sum_{e \in E}\left(a \sum_{x=1}^{n_{e}(\boldsymbol{s})} x+n_{e}(\boldsymbol{s}) b_{e}\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}(\boldsymbol{s}) \\
& =\sum_{i \in N} \sum_{e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in s_{i}} f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot f_{e}\left(n_{e}(\boldsymbol{s})\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{s}) \cdot\left(a_{e} n_{e}(\boldsymbol{s})+b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi(s)=\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})} f_{e}(x) \\
& =\sum_{e \in E} \sum_{x=1}^{n_{e}(\boldsymbol{s})}\left(a_{e} x+b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} \sum_{x=1}^{n_{e}(\boldsymbol{s})} x+n_{e}(\boldsymbol{s}) b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} \frac{n_{e}(\boldsymbol{s})^{2}+n_{e}(\boldsymbol{s})}{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right) \\
\Phi(\boldsymbol{s}) & =\sum_{e \in E}\left(a_{e} \frac{n_{e}(\boldsymbol{s})^{2}+n_{e}(\boldsymbol{s})}{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

Linear congestion games: PoS

$$
\begin{aligned}
\operatorname{SC}(\boldsymbol{s}) & =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right) \\
\Phi(\boldsymbol{s}) & =\sum_{e \in E}\left(a_{e} \frac{n_{e}(\boldsymbol{s})^{2}+n_{e}(\boldsymbol{s})}{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

- Since $n_{e}(\boldsymbol{s}) \geq 0$ and $1 \geq 1 / 2$, we get

$$
\Phi(\boldsymbol{s}) \geq \sum_{e \in E}\left(a_{e} \frac{n_{e}(\boldsymbol{s})^{2}}{2}+\frac{1}{2} \cdot b_{e} n_{e}(\boldsymbol{s})\right)=\frac{1}{2} \cdot \operatorname{SC}(\boldsymbol{s})
$$

Linear congestion games: PoS

$$
\begin{aligned}
\operatorname{SC}(\boldsymbol{s}) & =\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right) \\
\Phi(\boldsymbol{s}) & =\sum_{e \in E}\left(a_{e} \frac{n_{e}(\boldsymbol{s})^{2}+n_{e}(\boldsymbol{s})}{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

- Since $n_{e}(\boldsymbol{s}) \geq 0$ and $1 \geq 1 / 2$, we get

$$
\Phi(\boldsymbol{s}) \geq \sum_{e \in E}\left(a_{e} \frac{n_{e}(\boldsymbol{s})^{2}}{2}+\frac{1}{2} \cdot b_{e} n_{e}(\boldsymbol{s})\right)=\frac{1}{2} \cdot \operatorname{SC}(\boldsymbol{s})
$$

- Since $n_{e}(\boldsymbol{s}) \leq n_{e}(\boldsymbol{s})^{2}$, we get

$$
\Phi(\boldsymbol{s}) \leq \sum_{e \in E}\left(a_{e} \frac{n_{e}(\boldsymbol{s})^{2}+n_{e}(\boldsymbol{s})^{2}}{2}+b_{e} n_{e}(\boldsymbol{s})\right)=\operatorname{SC}(\boldsymbol{s})
$$

A general technique for PoA bounds

- Recall that a state $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ is an equilibrium if for each player i the strategy s_{i} minimizes her personal cost, given the strategies of the other players

A general technique for PoA bounds

- Recall that a state $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ is an equilibrium if for each player i the strategy s_{i} minimizes her personal cost, given the strategies of the other players
- $\boldsymbol{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$

A general technique for PoA bounds

- Recall that a state $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ is an equilibrium if for each player i the strategy s_{i} minimizes her personal cost, given the strategies of the other players
- $\boldsymbol{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$
- \boldsymbol{s} is an equilibrium if for each player i , the strategy s_{i} is such that $\operatorname{cost}_{i}\left(y, \boldsymbol{s}_{-i}\right)$ is minimized for $y=s_{i}$

A general technique for PoA bounds

- Recall that a state $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ is an equilibrium if for each player i the strategy s_{i} minimizes her personal cost, given the strategies of the other players
- $\boldsymbol{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$
- \boldsymbol{s} is an equilibrium if for each player i , the strategy s_{i} is such that $\operatorname{cost}_{i}\left(y, \boldsymbol{s}_{-i}\right)$ is minimized for $y=s_{i}$
- Alternatively, for every possible strategy y of player i :

$$
\operatorname{cost}_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right) \leq \operatorname{cost}_{i}\left(y, s_{-i}\right)
$$

A general technique for PoA bounds

- Recall that a state $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ is an equilibrium if for each player i the strategy s_{i} minimizes her personal cost, given the strategies of the other players
- $\boldsymbol{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$
- \boldsymbol{s} is an equilibrium if for each player i , the strategy s_{i} is such that $\operatorname{cost}_{i}\left(y, \boldsymbol{s}_{-i}\right)$ is minimized for $y=s_{i}$
- Alternatively, for every possible strategy y of player i :

$$
\operatorname{cost}_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right) \leq \operatorname{cost}_{i}\left(y, \boldsymbol{s}_{-i}\right)
$$

- We have one such inequality for every player

A general technique for PoA bounds

- By adding these inequalities, we get

$$
\operatorname{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right) \leq \sum_{i \in N} \operatorname{cost}_{i}\left(y, \boldsymbol{s}_{-i}\right)
$$

A general technique for PoA bounds

- By adding these inequalities, we get

$$
\operatorname{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right) \leq \sum_{i \in N} \operatorname{cost}_{i}\left(y, \boldsymbol{s}_{-i}\right)
$$

- We can get an upper bound of λ on the price of anarchy if there exists a strategy y_{i} for every player i such that

$$
\sum_{i \in N} \operatorname{cost}_{i}\left(y_{i}, s_{-i}\right) \leq \lambda \cdot \operatorname{SC}\left(s_{O P T}\right)
$$

A general technique for PoA bounds

- By adding these inequalities, we get

$$
\operatorname{SC}(\boldsymbol{s})=\sum_{i \in N} \operatorname{cost}_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right) \leq \sum_{i \in N} \operatorname{cost}_{i}\left(y, \boldsymbol{s}_{-i}\right)
$$

- We can get an upper bound of λ on the price of anarchy if there exists a strategy y_{i} for every player i such that

$$
\sum_{i \in N} \operatorname{cost}_{i}\left(y_{i}, \boldsymbol{s}_{-i}\right) \leq \lambda \cdot \operatorname{SC}\left(\boldsymbol{s}_{O P T}\right)
$$

- The goal is to pinpoint the strategy y_{i} for each player i, which will allow us to prove an inequality like this

Linear congestion games: PoA

Theorem

The price of anarchy of linear congestion games is at most $5 / 2$

Linear congestion games: PoA

Theorem

The price of anarchy of linear congestion games is at most 5/2

- $\boldsymbol{s}=\left(s_{1}, \ldots s_{n}\right)$ is an equilibrium state
- $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ is an arbitrary state

Linear congestion games: PoA

Theorem

The price of anarchy of linear congestion games is at most 5/2

- $\boldsymbol{s}=\left(s_{1}, \ldots s_{n}\right)$ is an equilibrium state
- $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ is an arbitrary state

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & =\sum_{i \in N} \operatorname{cost}_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right) \\
& \leq \sum_{i \in N} \operatorname{cost}_{i}\left(y_{i}, \boldsymbol{s}_{-i}\right)
\end{aligned}
$$

Linear congestion games: PoA

Theorem

The price of anarchy of linear congestion games is at most 5/2

- $\boldsymbol{s}=\left(s_{1}, \ldots s_{n}\right)$ is an equilibrium state
- $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ is an arbitrary state

$$
\begin{aligned}
\operatorname{SC}(\boldsymbol{s}) & =\sum_{i \in N} \operatorname{cost}_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right) \\
& \leq \sum_{i \in N} \operatorname{cost}_{i}\left(y_{i}, \boldsymbol{s}_{-i}\right) \\
& =\sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right)+b_{e}\right)
\end{aligned}
$$

Linear congestion games: PoA

- $\left(y_{i}, \boldsymbol{s}_{-i}\right)$ differs from $\boldsymbol{s}=\left(s_{i}, \boldsymbol{s}_{-i}\right)$ only in the strategy of player i

Linear congestion games: PoA

- $\left(y_{i}, \boldsymbol{s}_{-i}\right)$ differs from $\boldsymbol{s}=\left(s_{i}, \boldsymbol{s}_{-i}\right)$ only in the strategy of player i $\Rightarrow n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right) \leq n_{e}(\boldsymbol{s})+1$ for every resource $e \in E$

Linear congestion games: PoA

- $\left(y_{i}, \boldsymbol{s}_{-i}\right)$ differs from $\boldsymbol{s}=\left(s_{i}, \boldsymbol{s}_{-i}\right)$ only in the strategy of player i $\Rightarrow n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right) \leq n_{e}(\boldsymbol{s})+1$ for every resource $e \in E$

$$
\mathrm{SC}(\boldsymbol{s}) \leq \sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right)+b_{e}\right)
$$

Linear congestion games: PoA

- $\left(y_{i}, \boldsymbol{s}_{-i}\right)$ differs from $\boldsymbol{s}=\left(s_{i}, \boldsymbol{s}_{-i}\right)$ only in the strategy of player i $\Rightarrow n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right) \leq n_{e}(\boldsymbol{s})+1$ for every resource $e \in E$

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & \leq \sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right)+b_{e}\right) \\
& \leq \sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot\left(n_{e}(\boldsymbol{s})+1\right)+b_{e}\right)
\end{aligned}
$$

Linear congestion games: PoA

- $\left(y_{i}, \boldsymbol{s}_{-i}\right)$ differs from $\boldsymbol{s}=\left(s_{i}, \boldsymbol{s}_{-i}\right)$ only in the strategy of player i $\Rightarrow n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right) \leq n_{e}(\boldsymbol{s})+1$ for every resource $e \in E$

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & \leq \sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right)+b_{e}\right) \\
& \leq \sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot\left(n_{e}(\boldsymbol{s})+1\right)+b_{e}\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{y})\left(a_{e} \cdot\left(n_{e}(\boldsymbol{s})+1\right)+b_{e}\right)
\end{aligned}
$$

Linear congestion games: PoA

- $\left(y_{i}, \boldsymbol{s}_{-i}\right)$ differs from $\boldsymbol{s}=\left(s_{i}, \boldsymbol{s}_{-i}\right)$ only in the strategy of player i $\Rightarrow n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right) \leq n_{e}(\boldsymbol{s})+1$ for every resource $e \in E$

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & \leq \sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot n_{e}\left(y_{i}, \boldsymbol{s}_{-i}\right)+b_{e}\right) \\
& \leq \sum_{e \in E} \sum_{i \in N: e \in y_{i}}\left(a_{e} \cdot\left(n_{e}(\boldsymbol{s})+1\right)+b_{e}\right) \\
& =\sum_{e \in E} n_{e}(\boldsymbol{y})\left(a_{e} \cdot\left(n_{e}(\boldsymbol{s})+1\right)+b_{e}\right) \\
& =\sum_{e \in E}\left(a_{e} \cdot n_{e}(\boldsymbol{y}) \cdot\left(n_{e}(\boldsymbol{s})+1\right)+b_{e} n_{e}(\boldsymbol{y})\right)
\end{aligned}
$$

Linear congestion games: PoA

- For every pair of integers $\gamma, \delta \geq 0: \gamma(\delta+1) \leq \frac{1}{3}\left(5 \gamma^{2}+\delta^{2}\right)$

Linear congestion games: PoA

- For every pair of integers $\gamma, \delta \geq 0: \gamma(\delta+1) \leq \frac{1}{3}\left(5 \gamma^{2}+\delta^{2}\right)$
- Set $\gamma=n_{e}(\boldsymbol{y})$ and $\delta=n_{e}(\boldsymbol{s})$

Linear congestion games: PoA

- For every pair of integers $\gamma, \delta \geq 0: \gamma(\delta+1) \leq \frac{1}{3}\left(5 \gamma^{2}+\delta^{2}\right)$
- Set $\gamma=n_{e}(\boldsymbol{y})$ and $\delta=n_{e}(\boldsymbol{s})$

$$
\operatorname{SC}(\boldsymbol{s}) \leq \sum_{e \in E}\left(a_{e} \cdot n_{e}(\boldsymbol{y})\left(n_{e}(\boldsymbol{s})+1\right)+b_{e} n_{e}(\boldsymbol{y})\right)
$$

Linear congestion games: PoA

- For every pair of integers $\gamma, \delta \geq 0: \gamma(\delta+1) \leq \frac{1}{3}\left(5 \gamma^{2}+\delta^{2}\right)$
- Set $\gamma=n_{e}(\boldsymbol{y})$ and $\delta=n_{e}(\boldsymbol{s})$

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & \leq \sum_{e \in E}\left(a_{e} \cdot n_{e}(\boldsymbol{y})\left(n_{e}(\boldsymbol{s})+1\right)+b_{e} n_{e}(\boldsymbol{y})\right) \\
& \leq \sum_{e \in E}\left(a_{e} \cdot \frac{1}{3}\left(5 n_{e}(\boldsymbol{y})^{2}+n_{e}(\boldsymbol{s})^{2}\right)+b_{e} n_{e}(\boldsymbol{y})\right)
\end{aligned}
$$

Linear congestion games: PoA

- For every pair of integers $\gamma, \delta \geq 0: \gamma(\delta+1) \leq \frac{1}{3}\left(5 \gamma^{2}+\delta^{2}\right)$
- Set $\gamma=n_{e}(\boldsymbol{y})$ and $\delta=n_{e}(\boldsymbol{s})$

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & \leq \sum_{e \in E}\left(a_{e} \cdot n_{e}(\boldsymbol{y})\left(n_{e}(\boldsymbol{s})+1\right)+b_{e} n_{e}(\boldsymbol{y})\right) \\
& \leq \sum_{e \in E}\left(a_{e} \cdot \frac{1}{3}\left(5 n_{e}(\boldsymbol{y})^{2}+n_{e}(\boldsymbol{s})^{2}\right)+b_{e} n_{e}(\boldsymbol{y})\right) \\
& =\sum_{e \in E}\left(\frac{5}{3} a_{e} n_{e}(\boldsymbol{y})^{2}+b_{e} n_{e}(\boldsymbol{y})\right)+\frac{1}{3} \sum_{e \in E} a_{e} n_{e}(\boldsymbol{s})^{2}
\end{aligned}
$$

Linear congestion games: PoA

- For every pair of integers $\gamma, \delta \geq 0: \gamma(\delta+1) \leq \frac{1}{3}\left(5 \gamma^{2}+\delta^{2}\right)$
- Set $\gamma=n_{e}(\boldsymbol{y})$ and $\delta=n_{e}(\boldsymbol{s})$

$$
\begin{aligned}
\mathrm{SC}(\boldsymbol{s}) & \leq \sum_{e \in E}\left(a_{e} \cdot n_{e}(\boldsymbol{y})\left(n_{e}(\boldsymbol{s})+1\right)+b_{e} n_{e}(\boldsymbol{y})\right) \\
& \leq \sum_{e \in E}\left(a_{e} \cdot \frac{1}{3}\left(5 n_{e}(\boldsymbol{y})^{2}+n_{e}(\boldsymbol{s})^{2}\right)+b_{e} n_{e}(\boldsymbol{y})\right) \\
& =\sum_{e \in E}\left(\frac{5}{3} a_{e} n_{e}(\boldsymbol{y})^{2}+b_{e} n_{e}(\boldsymbol{y})\right)+\frac{1}{3} \sum_{e \in E} a_{e} n_{e}(\boldsymbol{s})^{2} \\
& \leq \frac{5}{3} \sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{y})^{2}+b_{e} n_{e}(\boldsymbol{y})\right)+\frac{1}{3} \sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{s})^{2}+b_{e} n_{e}(\boldsymbol{s})\right)
\end{aligned}
$$

Linear congestion games: PoA

- Since

$$
\operatorname{SC}(\boldsymbol{y})=\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{y})^{2}+b_{e} n_{e}(\boldsymbol{y})\right)
$$

Linear congestion games: PoA

- Since

$$
\operatorname{SC}(\boldsymbol{y})=\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{y})^{2}+b_{e} n_{e}(\boldsymbol{y})\right)
$$

we obtain

$$
\operatorname{SC}(\boldsymbol{s}) \leq \frac{5}{3} \operatorname{SC}(\boldsymbol{y})+\frac{1}{3} \operatorname{SC}(\boldsymbol{s})
$$

Linear congestion games: PoA

- Since

$$
\operatorname{SC}(\boldsymbol{y})=\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{y})^{2}+b_{e} n_{e}(\boldsymbol{y})\right)
$$

we obtain

$$
\begin{aligned}
& \mathrm{SC}(\boldsymbol{s}) \leq \frac{5}{3} \operatorname{SC}(\boldsymbol{y})+\frac{1}{3} \operatorname{SC}(\boldsymbol{s}) \\
& \Rightarrow \frac{\operatorname{SC}(\boldsymbol{s})}{\operatorname{SC}(\boldsymbol{y})} \leq \frac{5}{2}
\end{aligned}
$$

Linear congestion games: PoA

- Since

$$
\operatorname{SC}(\boldsymbol{y})=\sum_{e \in E}\left(a_{e} n_{e}(\boldsymbol{y})^{2}+b_{e} n_{e}(\boldsymbol{y})\right)
$$

we obtain

$$
\begin{aligned}
& \operatorname{SC}(s) \leq \frac{5}{3} \operatorname{SC}(\boldsymbol{y})+\frac{1}{3} \operatorname{SC}(s) \\
& \Rightarrow \frac{\operatorname{SC}(\boldsymbol{s})}{\operatorname{SC}(\boldsymbol{y})} \leq \frac{5}{2}
\end{aligned}
$$

- Since this holds for any \boldsymbol{y}, it also holds for $\boldsymbol{s}_{O P T}$

Can we do any better?

Can we do any better?

Theorem

The price of anarchy of linear congestion games is at least 5/2

Can we do any better?

Theorem

The price of anarchy of linear congestion games is at least 5/2

- To show a lower bound, it suffices to construct a specific instance and prove that the social cost of the equilibrium is $5 / 2$ times the optimal social cost

Can we do any better?

Can we do any better?

- Equilibrium: each player i uses two edges to connect z_{i} to t_{i}
- Players 1 and 2 (red, blue) have cost 3 , while players 3 and 4 (green, orange) have cost 2
- By changing to the direct edge, all players would still have the same cost, so there is no reason for them to deviate

Can we do any better?

- Optimal: each player i uses the direct edge between z_{i} and t_{i}
- All players have cost 1
- $\mathrm{SC}($ equilibrium $)=10$ vs. $\mathrm{SC}($ optimal $)=4 \Rightarrow \mathrm{PoA}=5 / 2$

Summary

Summary

- Social cost of a state: the total cost of the players

Summary

- Social cost of a state: the total cost of the players
- Price of stability: best equilibrium over optimal state

Summary

- Social cost of a state: the total cost of the players
- Price of stability: best equilibrium over optimal state
- Price of anarchy: worst equilibrium over optimal state

Summary

- Social cost of a state: the total cost of the players
- Price of stability: best equilibrium over optimal state
- Price of anarchy: worst equilibrium over optimal state
- PoS bounds for potential games: find a relation between the potential function and the social cost, and use the potential function method

Summary

- Social cost of a state: the total cost of the players
- Price of stability: best equilibrium over optimal state
- Price of anarchy: worst equilibrium over optimal state
- PoS bounds for potential games: find a relation between the potential function and the social cost, and use the potential function method
- Pos of linear congestion games: at most 2

Summary

- Social cost of a state: the total cost of the players
- Price of stability: best equilibrium over optimal state
- Price of anarchy: worst equilibrium over optimal state
- PoS bounds for potential games: find a relation between the potential function and the social cost, and use the potential function method
- Pos of linear congestion games: at most 2
- PoA bounds: use the equilibrium condition inequalities with deviating strategies that have some relation to the optimal state

Summary

- Social cost of a state: the total cost of the players
- Price of stability: best equilibrium over optimal state
- Price of anarchy: worst equilibrium over optimal state
- PoS bounds for potential games: find a relation between the potential function and the social cost, and use the potential function method
- Pos of linear congestion games: at most 2
- PoA bounds: use the equilibrium condition inequalities with deviating strategies that have some relation to the optimal state
- PoA of linear congestion games: tight bound of $5 / 2$

Some further readings

- The price of anarchy of finite congestion games
- G. Christodoulou and E. Koutsoupias
- Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 67-73, 2005
- Tight bounds for selfish and greedy load balancing
- I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and L. Moscardelli
- Algorithmica, vol. 61(3), pp.606-637, 2011
- Intrinsic robustness of the price of anarchy
- T. Roughgarden
- Journal of the ACM, vol. 62(5), pp 32:1-42, 2015
- The price of stability for network design with fair cost allocation
- E. Anshelevich, A. Dasgupta, J. M. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden
- SIAM Journal on Computing, vol. 38(4), pp. 1602-1623, 2008

