
Efficiency at equilibrium

Alexandros Voudouris

University of Oxford



Efficiency at equilibrium?

• Focus on congestion games 



Efficiency at equilibrium?

• Focus on congestion games 

• In each state, every player has some cost depending on the strategies 
of all players



Efficiency at equilibrium?

• Focus on congestion games 

• In each state, every player has some cost depending on the strategies 
of all players

• We can measure the efficiency of a state 𝒔 as the total cost of all 
players (the sum of their costs), which we term social cost:

SC 𝒔 = 

𝑖∈𝑁

cost𝑖(𝒔)



Efficiency at equilibrium?

• Focus on congestion games 

• In each state, every player has some cost depending on the strategies 
of all players

• We can measure the efficiency of a state 𝒔 as the total cost of all 
players (the sum of their costs), which we term social cost:

• Now, we can ask the following questions: which state of the game 
minimizes the social cost? Is it an equilibrium? If not, then what is the 
difference between the social cost of an equilibrium and the minimum 
possible social cost?

SC 𝒔 = 
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cost𝑖(𝒔)
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• The states (𝑀1, 𝑀2) and (𝑀2, 𝑀1) however are the optimal ones with 
social cost 3 + 𝜖

• The strategic behavior of the players does not allow them to reach the 
optimal state of the game 
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• NE = set of all equilibrium states of the game

• 𝒔𝑂𝑃𝑇 ∈ arg min
𝒔

SC 𝒔 = state of the game with minimum social cost 

• The price of stability is an optimistic measure: it considers the best 
equilibrium (with minimum social cost)

• The price of anarchy is a pessimistic measure: it considers the worst 
equilibrium (with maximum social cost)
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Load balancing: Example 1

• (𝑀1, 𝑀1) is the only equilibrium of the game, with social cost 4

• The states (𝑀1, 𝑀2) and (𝑀2, 𝑀1) are the optimal ones with social 
cost 3 + 𝜖
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Load balancing: Example 2

• Change the latency of the second machine to 𝑓2(𝑥) = (2 − 𝜖)𝑥

• (𝑀1, 𝑀2) and (𝑀2, 𝑀1) are both equilibrium states and have optimal 
social cost of 3 − 𝜖
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Load balancing: Example 3

• Change the latency of the second machine to 𝑓2(𝑥) = 2𝑥

• There are three equilibrium states: 𝑀1, 𝑀1 , (𝑀1, 𝑀2) and (𝑀2, 𝑀1)

• 𝑀1, 𝑀1 has social cost 4, while (𝑀1, 𝑀2) and (𝑀2, 𝑀1) have social 
cost 3 and are the optimal states
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𝑎𝑒 , 𝑏𝑒 ≥ 0

• Recall Rosenthal’s potential function:

– 𝑛𝑒(𝒔) is the load of 𝑒, equal to the number of players using it

• We will show bounds on the price of stability and the price of anarchy 
for this special class of congestion games

• We want these bounds to be close to 1 to guarantee high efficiency
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Linear congestion games: PoS

• All we need to show is that there exist parameters 𝜆 and 𝜇 such that 
𝜇/𝜆 = 2

• In particular we will show that 𝜆 = 1/2 and 𝜇 = 1:

Theorem
The price of stability of linear congestion games is at most 2

1

2
∙ SC 𝒔 ≤ Φ 𝒔 ≤ SC 𝒔
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▢
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• By adding these inequalities, we get

• We can get an upper bound of 𝜆 on the price of anarchy if there exists 
a strategy 𝑦𝑖 for every player 𝑖 such that

• The goal is to pinpoint the strategy 𝑦𝑖 for each player 𝑖, which will  
allow us to prove an inequality like this
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• To show a lower bound, it suffices to construct a specific instance and 
prove that the social cost of the equilibrium is 5/2 times the optimal 
social cost
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• Equilibrium: each player 𝑖 uses two edges to connect 𝑧𝑖 to 𝑡𝑖

• Players 1 and 2 (red, blue) have cost 3, while players 3 and 4 (green, 
orange) have cost 2

• By changing to the direct edge, all players would still have the same 
cost, so there is no reason for them to deviate

Can we do any better?
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• Optimal: each player 𝑖 uses the direct edge between 𝑧𝑖 and 𝑡𝑖

• All players have cost 1

• SC(equilibrium) = 10 vs. SC(optimal) = 4 ⇨ PoA = 5/2

▢

Can we do any better?
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• PoS bounds for potential games: find a relation between the 
potential function and the social cost, and use the potential function 
method

• Pos of linear congestion games: at most 2

• PoA bounds: use the equilibrium condition inequalities with deviating 
strategies that have some relation to the optimal state

• PoA of linear congestion games: tight bound of 5/2

Summary



• The price of anarchy of finite congestion games

– G. Christodoulou and E. Koutsoupias

– Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 
67-73, 2005

• Tight bounds for selfish and greedy load balancing

– I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and L. Moscardelli

– Algorithmica, vol. 61(3), pp. 606-637, 2011

• Intrinsic robustness of the price of anarchy

– T. Roughgarden

– Journal of the ACM, vol. 62(5), pp 32:1-42, 2015

• The price of stability for network design with fair cost allocation

– E. Anshelevich, A. Dasgupta, J. M. Kleinberg, E. Tardos, T. Wexler, and T. 
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Some further readings


