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• One divisible resource

– Bandwidth of a communication link

– Processing time of a CPU

– Storage space of a cloud

• 𝑛 players with valuation functions 𝑣𝑖: 0,1 → ℝ≥0

– 𝑣𝑖 𝑥 represents the value of user 𝑖 for a fraction 𝑥 of the resource

– concave 

– increasing

– differentiable
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• Each player 𝑖 submits a bid 𝑏𝑖

• Given the bids 𝒃 = 𝑏1, … , 𝑏𝑛 of all players, player 𝑖 receives a 
fraction

of the resource, and pays 𝑏𝑖 as compensation for this particular share 
of the resource

• The utility of each player is defined as the difference between the 
value she has for the fraction she receives, minus her payment:

𝑑𝑖(𝒃) =

𝑏𝑖

σ𝑗∈𝑁 𝑏𝑗

𝑏𝑖 ≠ 0

0 𝑏𝑖 = 0

𝑢𝑖 𝒃 = 𝑣𝑖 𝑑𝑖(𝒃) − 𝑏𝑖



The game

• Since 𝑣𝑖(𝑥) is a concave function, 𝑢𝑖(𝒃) is a concave function

𝑣𝑖

0 𝑑𝑖(𝑏𝑖 , 𝒃−𝑖) 1

𝑢𝑖

0 𝑏𝑖



Best response computation

• 𝐵−𝑖 = σ𝑗≠i 𝑏𝑗

• Compute the utility derivative of player 𝑖 as function of her generic 
bid 𝑦:
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𝜕𝑦
= 𝑣𝑖

𝑦

𝑦 + 𝐵−𝑖
− 𝑦

′

=
𝐵−𝑖

𝑦 + 𝐵−𝑖
2 𝑣𝑖

′ 𝑦
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− 1
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Best response computation

• 𝐵−𝑖 = σ𝑗≠i 𝑏𝑗

• Compute the utility derivative of player 𝑖 as function of her generic 
bid 𝑦:

• If the derivative is negative for every 𝑦, then 𝑏𝑖 = 0

• Otherwise, 𝑏𝑖 is the solution of the equation that is derived by 
nullifying the derivative

𝜕𝑢𝑖(𝑦, 𝒃−𝑖)
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Example of equilibrium computation
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Efficiency at equilibrium

• Every resource allocation game has a unique pure equilibrium 
⇨ price of stability = price of anarchy

• This is a utility maximization game: we aim to maximize the social 
welfare, defined as

• The welfare is a function of the allocation, not of the bids

• Actually, we aim to maximize the sum of utilities, but considering the 
payments as the total utility of the resource owner, the social welfare 
definition gets simplified

SW 𝒅 = ෍

𝑖∈𝑁

𝑣𝑖(𝑑𝑖)



Efficiency at equilibrium

• Refine price of anarchy for utility maximization:

• 𝒅𝑶𝑷𝑻 is the allocation achieving the maximum possible social welfare

PoA = max
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SW(𝒅(𝒃))
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Efficiency at equilibrium

• Refine price of anarchy for utility maximization:

• 𝒅𝑶𝑷𝑻 is the allocation achieving the maximum possible social welfare

• Note the difference from cost minimization games: we take the 
optimal social welfare over the social welfare of the equilibrium

• Since the equilibrium is unique, the max operator doesn’t make any 
difference for the price of anarchy of a given game

PoA = max
𝒃∈NE

SW(𝒅𝑶𝑷𝑻)

SW(𝒅(𝒃))
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• Two players: 𝑣1(𝑥) = 𝑥, 𝑣2(𝑥) =
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• To compute the optimal allocation, we just need to look at the linear 
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Efficiency at equilibrium: example

• Two players: 𝑣1(𝑥) = 𝑥, 𝑣2(𝑥) =
1

2
𝑥

• In equilibrium:

• To compute the optimal allocation, we just need to look at the linear 
functions and give the whole resource to player 1 who has the largest 
slope ⇨ SW 𝑑𝑂𝑃𝑇 = 𝑣1 1 = 1

• Hence, the price of anarchy of this game is 6/5
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Bounding the PoA

• 𝒃 = bids of all players at equilibrium

• 𝐵−𝑖 = σ𝑗≠i 𝑏𝑗

• 𝐵 = 𝑏𝑖 + 𝐵−𝑖

• 𝑑𝑖 = resource fraction player 𝑖 gets at equilibrium

• 𝑥𝑖 = optimal resource fraction of player 𝑖

Theorem
The price of anarchy of proportional resource allocation games 
with 𝑛 players is at most 2
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Bounding the PoA

• Definition of social welfare at equilibrium:
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A lower bound on the PoA

Theorem
The price of anarchy of proportional resource allocation games 
with 𝑛 players is at least 4/3



A lower bound on the PoA

• One player with 𝑣1(𝑥) = 𝑥

• 𝑛 − 1 players with 𝑣2(𝑥) = 𝑥/2

Theorem
The price of anarchy of proportional resource allocation games 
with 𝑛 players is at least 4/3



A lower bound on the PoA

• One player with 𝑣1(𝑥) = 𝑥

• 𝑛 − 1 players with 𝑣2(𝑥) = 𝑥/2

• At equilibrium:

– The first player gets half the resource for a value of 1/2

– The other half of the resource is equally shared among the other 
𝑛 − 1 players for a total value of 1/4

Theorem
The price of anarchy of proportional resource allocation games 
with 𝑛 players is at least 4/3



A lower bound on the PoA

• One player with 𝑣1(𝑥) = 𝑥

• 𝑛 − 1 players with 𝑣2(𝑥) = 𝑥/2

• At equilibrium:

– The first player gets half the resource for a value of 1/2

– The other half of the resource is equally shared among the other 
𝑛 − 1 players for a total value of 1/4

• The optimal allocation is to give the whole resource to the first player 
for a value of 1 ▢

Theorem
The price of anarchy of proportional resource allocation games 
with 𝑛 players is at least 4/3



Can we fill in the gap?

• We know an upper bound of 2 and a lower bound of 4/3

• Two possible ways to go:

– either try to improve the lower bound by finding a different 
example with worst price of anarchy, 

– or try to decrease the upper bound by taking the equilibrium into 
account



Worst-case games

Lemma
For any 𝒃,

SW(𝒅𝑶𝑷𝑻)

SW(𝒅 𝒃 )
≤

max
𝑖

𝑣𝑖
′ 𝑑𝑖 𝒃

σ𝑖 𝑑𝑖 𝒃 ⋅ 𝑣𝑖
′ 𝑑𝑖 𝒃



Worst-case games

• 𝑑𝑖 = resource fraction player 𝑖 gets according to 𝒃

• 𝑥𝑖 = optimal resource fraction of player 𝑖

Lemma
For any 𝒃,

SW(𝒅𝑶𝑷𝑻)

SW(𝒅 𝒃 )
≤

max
𝑖

𝑣𝑖
′ 𝑑𝑖 𝒃

σ𝑖 𝑑𝑖 𝒃 ⋅ 𝑣𝑖
′ 𝑑𝑖 𝒃



Worst-case games

• Concavity of 𝑣𝑖: 

𝑣𝑖 𝑥𝑖 ≤ 𝑣𝑖 𝑑𝑖 + 𝑣𝑖
′(𝑑𝑖)(𝑥𝑖 − 𝑑𝑖)
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Worst-case games

• We have:

෍

𝑖

𝑥𝑖𝑣𝑖
′(𝑑𝑖) ≤ ෍

𝑖

𝑥𝑖 ⋅ max
𝑖

𝑣𝑖
′ 𝑑𝑖
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𝑖

𝑣𝑖
′ 𝑑𝑖 ⋅ ෍

𝑖

𝑥𝑖
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𝑖

𝑣𝑖
′ 𝑑𝑖
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Worst-case games

• We have:

• Similarly:
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𝑖
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෍

𝑖

𝑑𝑖𝑣𝑖
′(𝑑𝑖) ≤ max

𝑖
𝑣𝑖

′ 𝑑𝑖



Worst-case games

SW(𝒅 𝒃 )

SW(𝒅𝑶𝑷𝑻)
≤

σ𝑖 𝑣𝑖 𝑑𝑖 − 𝑑𝑖𝑣𝑖
′ 𝑑𝑖 + max

𝑖
𝑣𝑖

′ 𝑑𝑖

σ𝑖 𝑣𝑖 𝑑𝑖 − 𝑑𝑖𝑣𝑖
′ 𝑑𝑖 + σ𝑖 𝑑𝑖𝑣𝑖

′(𝑑𝑖)



Worst-case games

𝑣𝑖 0 ≥ 0 [by definition]

𝑑𝑖𝑣𝑖
′ 𝑑𝑖 ≤ 𝑣𝑖 𝑑𝑖 [by concavity]
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𝑣𝑖 0 ≥ 0 [by definition]
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Worst-case games

𝑣𝑖 0 ≥ 0 [by definition]

𝑑𝑖𝑣𝑖
′ 𝑑𝑖 ≤ 𝑣𝑖 𝑑𝑖 [by concavity]
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𝑣𝑖
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σ𝑖 𝑣𝑖 𝑑𝑖 − 𝑑𝑖𝑣𝑖
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Worst-case games

• The lemma follows by applying the inequality:

with 𝛼 = σ𝑖 𝑣𝑖 𝑑𝑖 − 𝑑𝑖𝑣𝑖
′ 𝑑𝑖 , 𝛽 = max

𝑖
𝑣𝑖

′ 𝑑𝑖 , 𝛾 = σ𝑖 𝑑𝑖𝑣𝑖
′(𝑑𝑖)

▢

𝑣𝑖 0 ≥ 0 [by definition]

𝑑𝑖𝑣𝑖
′ 𝑑𝑖 ≤ 𝑣𝑖 𝑑𝑖 [by concavity]

෍
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, ∀𝛼 ≥ 0, 𝑏 ≥ 𝛾

SW(𝒅 𝒃 )

SW(𝒅𝑶𝑷𝑻)
≤

σ𝑖 𝑣𝑖 𝑑𝑖 − 𝑑𝑖𝑣𝑖
′ 𝑑𝑖 + max

𝑖
𝑣𝑖

′ 𝑑𝑖

σ𝑖 𝑣𝑖 𝑑𝑖 − 𝑑𝑖𝑣𝑖
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How can we exploit this?

SW(𝒅𝑶𝑷𝑻)

SW(𝒅 𝒃 )
≤

max
𝑖

𝑣𝑖
′ 𝑑𝑖 𝒃

σ𝑖 𝑑𝑖 𝒃 ⋅ 𝑣𝑖
′ 𝑑𝑖 𝒃



How can we exploit this?

• This inequality indicates that for every resource allocation game with 
increasing concave valuation functions, there exists another game 
with worse price of anarchy such that

– every player has a linear valuation function with slope equal to the 
valuation derivate at equilibrium in the original game, and

– the optimal allocation is such that the whole resource is shared 
between the players with maximum slope

SW(𝒅𝑶𝑷𝑻)

SW(𝒅 𝒃 )
≤

max
𝑖

𝑣𝑖
′ 𝑑𝑖 𝒃

σ𝑖 𝑑𝑖 𝒃 ⋅ 𝑣𝑖
′ 𝑑𝑖 𝒃



A tight PoA bound

Theorem
The price of anarchy of proportional resource allocation games 
with 𝑛 players is at most 4/3



A tight PoA bound

• 𝑣𝑖 𝑥 = 𝛼𝑖𝑥, 𝛼𝑖 ≥ 0

• 𝒃 = bids of all players at equilibrium

• 𝐵−𝑖 = σ𝑗≠i 𝑏𝑗

• 𝐵 = 𝑏𝑖 + 𝐵−𝑖

• 𝑑𝑖 = resource fraction player 𝑖 gets at equilibrium

• 𝑥𝑖 = optimal resource fraction of player 𝑖

Theorem
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• Now, we can lower bound the utility of player 𝑖:

• If  
3

4
𝛼𝑖 − 𝐵 < 0, the inequality holds trivially
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A tight PoA bound

• Definition of social welfare at equilibrium:

▢

SW 𝒅 = ෍

𝑖∈𝑁

𝑣𝑖(𝑑𝑖) = ෍

𝑖∈𝑁

(𝑢𝑖 𝒃 + 𝑏𝑖)

≥ ෍

𝑖∈𝑁

3

4
𝑣𝑖 𝑥𝑖 − 𝑥𝑖𝐵 + 𝐵

=
3

4
෍

𝑖∈𝑁

𝑣𝑖(𝑥𝑖) − 𝐵 ෍

𝑖∈𝑁

𝑥𝑖 + 𝐵

≥
3

4
SW(𝒅𝑶𝑷𝑻)

⇒ POA ≤
4

3

𝑢𝑖 𝒃 ≥
3

4
𝑣𝑖 𝑥𝑖 − 𝑥𝑖𝐵

෍

𝑖∈𝑁

𝑥𝑖 = 1
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Summary

• Setting: one divisible resource, players with concave valuation 
functions 

• The game: each player submits a bid, receives a proportional-to-the-
bid fraction of the resource, and pays her bid

• Utility of a player: value for her resource fraction minus payment

• Best response computation: nullify the utility derivative, or set to 
zero if utility derivative is negative

• There is a unique pure equilibrium

• Price of stability = price of anarchy

• Worst case for PoA: all players have linear valuation functions

• The price of anarchy is at most 4/3 and this bound is tight
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