Proportional resource allocation

Alexandros Voudouris
University of Oxford

The game

- One divisible resource
- Bandwidth of a communication link
- Processing time of a CPU
- Storage space of a cloud

The game

- One divisible resource
- Bandwidth of a communication link
- Processing time of a CPU
- Storage space of a cloud
- n players with valuation functions $v_{i}:[0,1] \rightarrow \mathbb{R}_{\geq 0}$
- $v_{i}(x)$ represents the value of user i for a fraction x of the resource
- concave
- increasing
- differentiable

The game

- Each player i submits a bid b_{i}

The game

- Each player i submits a bid b_{i}
- Given the bids $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$ of all players, player i receives a fraction

$$
d_{i}(\boldsymbol{b})=\left\{\begin{array}{cc}
\frac{b_{i}}{\sum_{j \in N} b_{j}} & b_{i} \neq 0 \\
0 & b_{i}=0
\end{array}\right.
$$

of the resource, and pays b_{i} as compensation for this particular share of the resource

The game

- Each player i submits a bid b_{i}
- Given the bids $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$ of all players, player i receives a fraction

$$
d_{i}(\boldsymbol{b})=\left\{\begin{array}{cc}
\frac{b_{i}}{\sum_{j \in N} b_{j}} & b_{i} \neq 0 \\
0 & b_{i}=0
\end{array}\right.
$$

of the resource, and pays b_{i} as compensation for this particular share of the resource

- The utility of each player is defined as the difference between the value she has for the fraction she receives, minus her payment:

$$
u_{i}(\boldsymbol{b})=v_{i}\left(d_{i}(\boldsymbol{b})\right)-b_{i}
$$

The game

- Since $v_{i}(x)$ is a concave function, $u_{i}(\boldsymbol{b})$ is a concave function

Best response computation

- $B_{-i}=\sum_{j \neq \mathrm{i}} b_{j}$
- Compute the utility derivative of player i as function of her generic bid y :

$$
\begin{aligned}
\frac{\partial u_{i}\left(y, \boldsymbol{b}_{-i}\right)}{\partial y} & =\left(v_{i}\left(\frac{y}{y+B_{-i}}\right)-y\right)^{\prime} \\
& =\frac{B_{-i}}{\left(y+B_{-i}\right)^{2}} v_{i}^{\prime}\left(\frac{y}{y+B_{-i}}\right)-1
\end{aligned}
$$

Best response computation

- $B_{-i}=\sum_{j \neq \mathrm{i}} b_{j}$
- Compute the utility derivative of player i as function of her generic bid y :

$$
\begin{aligned}
\frac{\partial u_{i}\left(y, \boldsymbol{b}_{-i}\right)}{\partial y} & =\left(v_{i}\left(\frac{y}{y+B_{-i}}\right)-y\right)^{\prime} \\
& =\frac{B_{-i}}{\left(y+B_{-i}\right)^{2}} v_{i}^{\prime}\left(\frac{y}{y+B_{-i}}\right)-1
\end{aligned}
$$

- If the derivative is negative for every $y_{\text {, }}$ then $b_{i}=0$

Best response computation

- $B_{-i}=\sum_{j \neq \mathrm{i}} b_{j}$
- Compute the utility derivative of player i as function of her generic bid y :

$$
\begin{aligned}
\frac{\partial u_{i}\left(y, \boldsymbol{b}_{-i}\right)}{\partial y} & =\left(v_{i}\left(\frac{y}{y+B_{-i}}\right)-y\right)^{\prime} \\
& =\frac{B_{-i}}{\left(y+B_{-i}\right)^{2}} v_{i}^{\prime}\left(\frac{y}{y+B_{-i}}\right)-1
\end{aligned}
$$

- If the derivative is negative for every y, then $b_{i}=0$
- Otherwise, b_{i} is the solution of the equation that is derived by nullifying the derivative

Example of equilibrium computation

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$

Example of equilibrium computation

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- Utility functions:

$$
\begin{aligned}
& u_{1}\left(b_{1}, b_{2}\right)=\frac{b_{1}}{b_{1}+b_{2}}-b_{1} \\
& u_{2}\left(b_{1}, b_{2}\right)=\frac{1}{2} \cdot \frac{b_{2}}{b_{1}+b_{2}}-b_{2}
\end{aligned}
$$

Example of equilibrium computation

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- Utility functions:

$$
\begin{aligned}
& u_{1}\left(b_{1}, b_{2}\right)=\frac{b_{1}}{b_{1}+b_{2}}-b_{1} \\
& u_{2}\left(b_{1}, b_{2}\right)=\frac{1}{2} \cdot \frac{b_{2}}{b_{1}+b_{2}}-b_{2}
\end{aligned}
$$

- Nullify the utility derivatives:

$$
\begin{aligned}
& \left(\frac{b_{1}}{b_{1}+b_{2}}-b_{1}\right)^{\prime}=0 \Leftrightarrow b_{2}=\left(b_{1}+b_{2}\right)^{2} \\
& \left(\frac{1}{2} \cdot \frac{b_{1}}{b_{1}+b_{2}}-b_{2}\right)^{\prime}=0 \Leftrightarrow b_{1}=2 \cdot\left(b_{1}+b_{2}\right)^{2}
\end{aligned}
$$

Example of equilibrium computation

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- Utility functions:

$$
\begin{aligned}
& u_{1}\left(b_{1}, b_{2}\right)=\frac{b_{1}}{b_{1}+b_{2}}-b_{1} \\
& u_{2}\left(b_{1}, b_{2}\right)=\frac{1}{2} \cdot \frac{b_{2}}{b_{1}+b_{2}}-b_{2}
\end{aligned}
$$

- Nullify the utility derivatives:

$$
\begin{aligned}
& \left(\frac{b_{1}}{b_{1}+b_{2}}-b_{1}\right)^{\prime}=0 \Leftrightarrow b_{2}=\left(b_{1}+b_{2}\right)^{2} \\
& \left(\frac{1}{2} \cdot \frac{b_{1}}{b_{1}+b_{2}}-b_{2}\right)^{\prime}=0 \Leftrightarrow b_{1}=2 \cdot\left(b_{1}+b_{2}\right)^{2}
\end{aligned} \quad \begin{aligned}
& b_{1}=\frac{2}{9} \\
& b_{2}=\frac{1}{9}
\end{aligned}
$$

Efficiency at equilibrium

- Every resource allocation game has a unique pure equilibrium \Rightarrow price of stability $=$ price of anarchy

Efficiency at equilibrium

- Every resource allocation game has a unique pure equilibrium \Rightarrow price of stability $=$ price of anarchy
- This is a utility maximization game: we aim to maximize the social welfare, defined as

$$
\operatorname{SW}(\boldsymbol{d})=\sum_{i \in N} v_{i}\left(d_{i}\right)
$$

Efficiency at equilibrium

- Every resource allocation game has a unique pure equilibrium \Rightarrow price of stability $=$ price of anarchy
- This is a utility maximization game: we aim to maximize the social welfare, defined as

$$
\mathrm{SW}(\boldsymbol{d})=\sum_{i \in N} v_{i}\left(d_{i}\right)
$$

- The welfare is a function of the allocation, not of the bids

Efficiency at equilibrium

- Every resource allocation game has a unique pure equilibrium \Rightarrow price of stability $=$ price of anarchy
- This is a utility maximization game: we aim to maximize the social welfare, defined as

$$
\mathrm{SW}(\boldsymbol{d})=\sum_{i \in N} v_{i}\left(d_{i}\right)
$$

- The welfare is a function of the allocation, not of the bids
- Actually, we aim to maximize the sum of utilities, but considering the payments as the total utility of the resource owner, the social welfare definition gets simplified

Efficiency at equilibrium

- Refine price of anarchy for utility maximization:

$$
\mathrm{PoA}=\max _{\boldsymbol{b} \in \mathrm{NE}} \frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}
$$

- $\boldsymbol{d}_{\boldsymbol{O P T}}$ is the allocation achieving the maximum possible social welfare

Efficiency at equilibrium

- Refine price of anarchy for utility maximization:

$$
\mathrm{PoA}=\max _{\boldsymbol{b} \in \mathrm{NE}} \frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}
$$

- $\boldsymbol{d}_{\boldsymbol{O P T}}$ is the allocation achieving the maximum possible social welfare
- Note the difference from cost minimization games: we take the optimal social welfare over the social welfare of the equilibrium

Efficiency at equilibrium

- Refine price of anarchy for utility maximization:

$$
\mathrm{PoA}=\max _{\boldsymbol{b} \in \mathrm{NE}} \frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}
$$

- $\boldsymbol{d}_{\boldsymbol{O P T}}$ is the allocation achieving the maximum possible social welfare
- Note the difference from cost minimization games: we take the optimal social welfare over the social welfare of the equilibrium
- Since the equilibrium is unique, the max operator doesn't make any difference for the price of anarchy of a given game

Efficiency at equilibrium: example

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$

Efficiency at equilibrium: example

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- In equilibrium:

$$
b_{1}=\frac{2}{9}, b_{2}=\frac{1}{9} \Rightarrow d_{1}(\boldsymbol{b})=\frac{2}{3}, d_{2}(\boldsymbol{b})=\frac{1}{3}
$$

Efficiency at equilibrium: example

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- In equilibrium:

$$
\begin{aligned}
& b_{1}=\frac{2}{9}, b_{2}=\frac{1}{9} \Rightarrow d_{1}(\boldsymbol{b})=\frac{2}{3}, d_{2}(\boldsymbol{b})=\frac{1}{3} \\
& \Rightarrow v_{1}\left(\frac{2}{3}\right)=\frac{2}{3}, v_{2}\left(\frac{1}{3}\right)=\frac{1}{6} \Rightarrow \operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))=\frac{5}{6}
\end{aligned}
$$

Efficiency at equilibrium: example

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- In equilibrium:

$$
\begin{aligned}
& b_{1}=\frac{2}{9}, b_{2}=\frac{1}{9} \Rightarrow d_{1}(\boldsymbol{b})=\frac{2}{3}, d_{2}(\boldsymbol{b})=\frac{1}{3} \\
& \Rightarrow v_{1}\left(\frac{2}{3}\right)=\frac{2}{3}, v_{2}\left(\frac{1}{3}\right)=\frac{1}{6} \Rightarrow \operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))=\frac{5}{6}
\end{aligned}
$$

- To compute the optimal allocation, we just need to look at the linear functions and give the whole resource to player 1 who has the largest slope

Efficiency at equilibrium: example

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- In equilibrium:

$$
\begin{aligned}
& b_{1}=\frac{2}{9}, b_{2}=\frac{1}{9} \Rightarrow d_{1}(\boldsymbol{b})=\frac{2}{3}, d_{2}(\boldsymbol{b})=\frac{1}{3} \\
& \Rightarrow v_{1}\left(\frac{2}{3}\right)=\frac{2}{3}, v_{2}\left(\frac{1}{3}\right)=\frac{1}{6} \Rightarrow \operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))=\frac{5}{6}
\end{aligned}
$$

- To compute the optimal allocation, we just need to look at the linear functions and give the whole resource to player 1 who has the largest slope $\Rightarrow S W\left(d_{O P T}\right)=v_{1}(1)=1$

Efficiency at equilibrium: example

- Two players: $v_{1}(x)=x, v_{2}(x)=\frac{1}{2} x$
- In equilibrium:

$$
\begin{aligned}
& b_{1}=\frac{2}{9}, b_{2}=\frac{1}{9} \Rightarrow d_{1}(\boldsymbol{b})=\frac{2}{3}, d_{2}(\boldsymbol{b})=\frac{1}{3} \\
& \Rightarrow v_{1}\left(\frac{2}{3}\right)=\frac{2}{3}, v_{2}\left(\frac{1}{3}\right)=\frac{1}{6} \Rightarrow \operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))=\frac{5}{6}
\end{aligned}
$$

- To compute the optimal allocation, we just need to look at the linear functions and give the whole resource to player 1 who has the largest slope $\Rightarrow S W\left(d_{O P T}\right)=v_{1}(1)=1$
- Hence, the price of anarchy of this game is $6 / 5$

Bounding the PoA

Theorem

The price of anarchy of proportional resource allocation games with n players is at most 2

Bounding the PoA

Theorem

The price of anarchy of proportional resource allocation games with n players is at most 2

- $\boldsymbol{b}=$ bids of all players at equilibrium
- $B_{-i}=\sum_{j \neq \mathrm{i}} b_{j}$
- $B=b_{i}+B_{-i}$
- $d_{i}=$ resource fraction player i gets at equilibrium
- $x_{i}=$ optimal resource fraction of player i

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

$$
u_{i}(\boldsymbol{b}) \geq u_{i}\left(y_{i}, \boldsymbol{b}_{-i}\right)
$$

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & \geq u_{i}\left(y_{i}, \boldsymbol{b}_{-i}\right) \\
& =v_{i}\left(\frac{x_{i} B_{-i}}{x_{i} B_{-i}+B_{-i}}\right)-x_{i} B_{-i}
\end{aligned}
$$

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & \geq u_{i}\left(y_{i}, \boldsymbol{b}_{-i}\right) \\
& =v_{i}\left(\frac{x_{i} B_{-i}}{x_{i} B_{-i}+B_{-i}}\right)-x_{i} B_{-i} \\
& =v_{i}\left(\frac{x_{i}}{x_{i}+1}\right)-x_{i} B_{-i}
\end{aligned}
$$

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & \geq u_{i}\left(y_{i}, \boldsymbol{b}_{-i}\right) \\
& =v_{i}\left(\frac{x_{i} B_{-i}}{x_{i} B_{-i}+B_{-i}}\right)-x_{i} B_{-i} \\
& =v_{i}\left(\frac{x_{i}}{x_{i}+1}\right)-x_{i} B_{-i} \quad \frac{x_{i}}{x_{i}+1} \geq \frac{1}{2} x_{i}, \quad B_{-i} \leq B
\end{aligned}
$$

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & \geq u_{i}\left(y_{i}, \boldsymbol{b}_{-i}\right) \\
& =v_{i}\left(\frac{x_{i} B_{-i}}{x_{i} B_{-i}+B_{-i}}\right)-x_{i} B_{-i} \\
& =v_{i}\left(\frac{x_{i}}{x_{i}+1}\right)-x_{i} B_{-i} \quad \frac{x_{i}}{x_{i}+1} \geq \frac{1}{2} x_{i}, B_{-i} \leq B \\
& \geq v_{i}\left(\frac{1}{2} x_{i}\right)-x_{i} B
\end{aligned}
$$

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & \geq u_{i}\left(y_{i}, \boldsymbol{b}_{-i}\right) \\
& =v_{i}\left(\frac{x_{i} B_{-i}}{x_{i} B_{-i}+B_{-i}}\right)-x_{i} B_{-i} \\
& =v_{i}\left(\frac{x_{i}}{x_{i}+1}\right)-x_{i} B_{-i} \\
& \geq v_{i}\left(\frac{1}{2} x_{i}\right)-x_{i} B \\
x_{i}+1 & \frac{1}{2} x_{i}, \quad B_{-i} \leq B \\
& \forall \lambda \in[0,1]: v_{i}(\lambda x) \geq \lambda v_{i}(x)
\end{aligned}
$$

Bounding the PoA

- Consider the deviation of player i to the bid $y_{i}=x_{i} B_{-i}$

$$
\begin{array}{rlr}
u_{i}(\boldsymbol{b}) & \geq u_{i}\left(y_{i}, \boldsymbol{b}_{-i}\right) & \\
& =v_{i}\left(\frac{x_{i} B_{-i}}{x_{i} B_{-i}+B_{-i}}\right)-x_{i} B_{-i} & \\
& =v_{i}\left(\frac{x_{i}}{x_{i}+1}\right)-x_{i} B_{-i} & \frac{x_{i}}{x_{i}+1} \geq \frac{1}{2} x_{i}, B_{-i} \leq B \\
& \geq v_{i}\left(\frac{1}{2} x_{i}\right)-x_{i} B & \forall \lambda \in[0,1]: v_{i}(\lambda x) \geq \lambda v_{i} \\
& \geq \frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B &
\end{array}
$$

Bounding the PoA

- Definition of social welfare at equilibrium:

Bounding the PoA

- Definition of social welfare at equilibrium:

$$
\operatorname{SW}(\boldsymbol{d})=\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right)
$$

Bounding the PoA

- Definition of social welfare at equilibrium:

$$
\operatorname{SW}(\boldsymbol{d})=\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right) \quad u_{i}(\boldsymbol{b}) \geq \frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B
$$

Bounding the PoA

- Definition of social welfare at equilibrium:

$$
\begin{aligned}
\operatorname{SW}(\boldsymbol{d}) & =\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right) \quad u_{i}(\boldsymbol{b}) \geq \frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B \\
& \geq \sum_{i \in N}\left(\frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B\right)+B
\end{aligned}
$$

Bounding the PoA

- Definition of social welfare at equilibrium:

$$
\begin{aligned}
\mathrm{SW}(\boldsymbol{d}) & =\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right) \quad u_{i}(\boldsymbol{b}) \geq \frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B \\
& \geq \sum_{i \in N}\left(\frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B\right)+B \\
& =\frac{1}{2} \sum_{i \in N} v_{i}\left(x_{i}\right)-B \sum_{i \in N} x_{i}+B
\end{aligned}
$$

Bounding the PoA

- Definition of social welfare at equilibrium:

$$
\begin{array}{rlr}
\operatorname{SW}(\boldsymbol{d}) & =\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right) & u_{i}(\boldsymbol{b}) \geq \frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B \\
& \geq \sum_{i \in N}\left(\frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B\right)+B \\
& =\frac{1}{2} \sum_{i \in N} v_{i}\left(x_{i}\right)-B \sum_{i \in N} x_{i}+B & \sum_{i \in N} x_{i}=1
\end{array}
$$

Bounding the PoA

- Definition of social welfare at equilibrium:

$$
\begin{aligned}
\mathrm{SW}(\boldsymbol{d}) & =\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right) u_{i}(\boldsymbol{b}) \geq \frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B \\
& \geq \sum_{i \in N}\left(\frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B\right)+B \\
& =\frac{1}{2} \sum_{i \in N} v_{i}\left(x_{i}\right)-B \sum_{i \in N} x_{i}+B \quad \sum_{i \in N} x_{i}=1 \\
& \geq \frac{1}{2} \operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)
\end{aligned}
$$

Bounding the PoA

- Definition of social welfare at equilibrium:

$$
\begin{aligned}
\mathrm{SW}(\boldsymbol{d}) & =\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right) u_{i}(\boldsymbol{b}) \geq \frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B \\
& \geq \sum_{i \in N}\left(\frac{1}{2} v_{i}\left(x_{i}\right)-x_{i} B\right)+B \\
& =\frac{1}{2} \sum_{i \in N} v_{i}\left(x_{i}\right)-B \sum_{i \in N} x_{i}+B \quad \sum_{i \in N} x_{i}=1 \\
& \geq \frac{1}{2} \operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right) \\
\Rightarrow \mathrm{POA} & \leq 2
\end{aligned}
$$

A lower bound on the PoA

Theorem

The price of anarchy of proportional resource allocation games with n players is at least $4 / 3$

A lower bound on the PoA

Theorem

The price of anarchy of proportional resource allocation games with n players is at least $4 / 3$

- One player with $v_{1}(x)=x$
- $n-1$ players with $v_{2}(x)=x / 2$

A lower bound on the PoA

Theorem

The price of anarchy of proportional resource allocation games with n players is at least $4 / 3$

- One player with $v_{1}(x)=x$
- $n-1$ players with $v_{2}(x)=x / 2$
- At equilibrium:
- The first player gets half the resource for a value of $1 / 2$
- The other half of the resource is equally shared among the other $n-1$ players for a total value of $1 / 4$

A lower bound on the PoA

Theorem

The price of anarchy of proportional resource allocation games with n players is at least $4 / 3$

- One player with $v_{1}(x)=x$
- $n-1$ players with $v_{2}(x)=x / 2$
- At equilibrium:
- The first player gets half the resource for a value of $1 / 2$
- The other half of the resource is equally shared among the other $n-1$ players for a total value of $1 / 4$
- The optimal allocation is to give the whole resource to the first player for a value of 1

Can we fill in the gap?

- We know an upper bound of 2 and a lower bound of $4 / 3$
- Two possible ways to go:
- either try to improve the lower bound by finding a different example with worst price of anarchy,
- or try to decrease the upper bound by taking the equilibrium into account

Worst-case games

Lemma

For any \boldsymbol{b},

$$
\frac{\mathrm{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))} \leq \frac{\max _{i}\left\{v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)\right\}}{\sum_{i} d_{i}(\boldsymbol{b}) \cdot v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)}
$$

Worst-case games

Lemma

For any \boldsymbol{b},

$$
\frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))} \leq \frac{\max _{i}\left\{v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)\right\}}{\sum_{i} d_{i}(\boldsymbol{b}) \cdot v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)}
$$

- $d_{i}=$ resource fraction player i gets according to \boldsymbol{b}
- $x_{i}=$ optimal resource fraction of player i

Worst-case games

- Concavity of v_{i} :

$$
v_{i}\left(x_{i}\right) \leq v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)
$$

Worst-case games

- Concavity of v_{i} :

$$
v_{i}\left(x_{i}\right) \leq v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)
$$

$$
\frac{\mathrm{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}=\frac{\sum_{i} v_{i}\left(x_{i}\right)}{\sum_{i} v_{i}\left(d_{i}\right)}
$$

Worst-case games

- Concavity of v_{i} :

$$
v_{i}\left(x_{i}\right) \leq v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)
$$

$$
\begin{aligned}
\frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P} \boldsymbol{T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))} & =\frac{\sum_{i} v_{i}\left(x_{i}\right)}{\sum_{i} v_{i}\left(d_{i}\right)} \\
& \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)\right)}{\sum_{i} v_{i}\left(d_{i}\right)}
\end{aligned}
$$

Worst-case games

- Concavity of v_{i} :

$$
v_{i}\left(x_{i}\right) \leq v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)
$$

$$
\begin{aligned}
\frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P} \boldsymbol{T}}\right)}{\mathrm{SW}(\boldsymbol{d}(\boldsymbol{b}))} & =\frac{\sum_{i} v_{i}\left(x_{i}\right)}{\sum_{i} v_{i}\left(d_{i}\right)} \\
& \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)\right)}{\sum_{i} v_{i}\left(d_{i}\right)} \\
& =\frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} x_{i} v_{i}^{\prime}\left(d_{i}\right)}{\sum_{i} v_{i}\left(d_{i}\right)}
\end{aligned}
$$

Worst-case games

- Concavity of v_{i} :

$$
v_{i}\left(x_{i}\right) \leq v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)
$$

$$
\begin{aligned}
\frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))} & =\frac{\sum_{i} v_{i}\left(x_{i}\right)}{\sum_{i} v_{i}\left(d_{i}\right)} \\
& \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)+v_{i}^{\prime}\left(d_{i}\right)\left(x_{i}-d_{i}\right)\right)}{\sum_{i} v_{i}\left(d_{i}\right)} \\
& =\frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} x_{i} v_{i}^{\prime}\left(d_{i}\right)}{\sum_{i} v_{i}\left(d_{i}\right)} \\
& =\frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} x_{i} v_{i}^{\prime}\left(d_{i}\right)}{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right)}
\end{aligned}
$$

Worst-case games

- We have:

$$
\sum_{i} x_{i} v_{i}^{\prime}\left(d_{i}\right) \leq \sum_{i} x_{i} \cdot \max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}
$$

Worst-case games

- We have:

$$
\begin{aligned}
\sum_{i} x_{i} v_{i}^{\prime}\left(d_{i}\right) & \leq \sum_{i} x_{i} \cdot \max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\} \\
& =\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\} \cdot \sum_{i} x_{i}
\end{aligned}
$$

Worst-case games

- We have:

$$
\begin{aligned}
\sum_{i} x_{i} v_{i}^{\prime}\left(d_{i}\right) & \leq \sum_{i} x_{i} \cdot \max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\} \\
& =\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\} \cdot \sum_{i} x_{i} \\
& =\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}
\end{aligned}
$$

Worst-case games

- We have:

$$
\begin{aligned}
\sum_{i} x_{i} v_{i}^{\prime}\left(d_{i}\right) & \leq \sum_{i} x_{i} \cdot \max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\} \\
& =\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\} \cdot \sum_{i} x_{i} \\
& =\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}
\end{aligned}
$$

- Similarly:

$$
\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right) \leq \max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}
$$

Worst-case games

$$
\frac{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}{\mathrm{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)} \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}}{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right)}
$$

Worst-case games

$$
\frac{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}{\mathrm{SW}\left(\boldsymbol{d}_{\boldsymbol{O P} \boldsymbol{T}}\right)} \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}}{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right)}
$$

$v_{i}(0) \geq 0 \quad$ [by definition]

Worst-case games

$$
\frac{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}{\mathrm{SW}\left(\boldsymbol{d}_{\boldsymbol{O P} \boldsymbol{T}}\right)} \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}}{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right)}
$$

$v_{i}(0) \geq 0 \quad$ [by definition]
$d_{i} v_{i}^{\prime}\left(d_{i}\right) \leq v_{i}\left(d_{i}\right)$ [by concavity]

Worst-case games

$$
\frac{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}{\mathrm{SW}\left(\boldsymbol{d}_{\boldsymbol{O P} \boldsymbol{T}}\right)} \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}}{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right)}
$$

$\left.\begin{array}{l}v_{i}(0) \geq 0 \quad[\text { by definition }] \\ d_{i} v_{i}^{\prime}\left(d_{i}\right) \leq v_{i}\left(d_{i}\right) \quad[\text { by concavity }]\end{array}\right] \sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right) \geq 0$

Worst-case games

$$
\begin{array}{r}
\frac{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))}{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P} \boldsymbol{T}}\right)} \leq \frac{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}}{\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right)+\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right)} \\
v_{i}(0) \geq 0 \quad[\text { by definition }] \\
d_{i} v_{i}^{\prime}\left(d_{i}\right) \leq v_{i}\left(d_{i}\right) \quad[\text { by concavity }] \quad \sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right) \geq 0
\end{array}
$$

- The lemma follows by applying the inequality:

$$
\frac{\alpha+\beta}{\alpha+\gamma} \leq \frac{\beta}{\gamma}, \quad \forall \alpha \geq 0, b \geq \gamma
$$

$$
\text { with } \alpha=\sum_{i}\left(v_{i}\left(d_{i}\right)-d_{i} v_{i}^{\prime}\left(d_{i}\right)\right), \beta=\max _{i}\left\{v_{i}^{\prime}\left(d_{i}\right)\right\}, \gamma=\sum_{i} d_{i} v_{i}^{\prime}\left(d_{i}\right)
$$

How can we exploit this?

$$
\frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))} \leq \frac{\max _{i}\left\{v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)\right\}}{\sum_{i} d_{i}(\boldsymbol{b}) \cdot v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)}
$$

How can we exploit this?

$$
\frac{\operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right)}{\operatorname{SW}(\boldsymbol{d}(\boldsymbol{b}))} \leq \frac{\max _{i}\left\{v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)\right\}}{\sum_{i} d_{i}(\boldsymbol{b}) \cdot v_{i}^{\prime}\left(d_{i}(\boldsymbol{b})\right)}
$$

- This inequality indicates that for every resource allocation game with increasing concave valuation functions, there exists another game with worse price of anarchy such that
- every player has a linear valuation function with slope equal to the valuation derivate at equilibrium in the original game, and
- the optimal allocation is such that the whole resource is shared between the players with maximum slope

A tight PoA bound

Theorem

The price of anarchy of proportional resource allocation games with n players is at most $4 / 3$

A tight PoA bound

Theorem

The price of anarchy of proportional resource allocation games with n players is at most $4 / 3$

- $v_{i}(x)=\alpha_{i} x, \quad \alpha_{i} \geq 0$
- $\boldsymbol{b}=$ bids of all players at equilibrium
- $B_{-i}=\sum_{j \neq \mathrm{i}} b_{j}$
- $B=b_{i}+B_{-i}$
- $d_{i}=$ resource fraction player i gets at equilibrium
- $x_{i}=$ optimal resource fraction of player i

A tight PoA bound

Theorem

The price of anarchy of proportional resource allocation games with n players is at most $4 / 3$

- $v_{i}(x)=\alpha_{i} x, \quad \alpha_{i} \geq 0$
- $\boldsymbol{b}=$ bids of all players at equilibrium
- $B_{-i}=\sum_{j \neq \mathrm{i}} b_{j}$
- $B=b_{i}+B_{-i}$
- $d_{i}=$ resource fraction player i gets at equilibrium
- $x_{i}=$ optimal resource fraction of player i
- Only consider the players with positive bids, everyone else gets zero fraction of the resource and does not contribute to the social welfare

A tight PoA bound

- Player i best responds by selecting the bid that nullifies the utility derivative:

$$
\left.\frac{\partial u_{i}\left(y, \boldsymbol{b}_{-i}\right)}{\partial y}\right|_{y=b_{i}}=0
$$

A tight PoA bound

- Player i best responds by selecting the bid that nullifies the utility derivative:

$$
\left.\frac{\partial u_{i}\left(y, \boldsymbol{b}_{-i}\right)}{\partial y}\right|_{y=b_{i}}=\left.0 \Leftrightarrow\left(\alpha_{i} \frac{y}{y+B_{-i}}-y\right)^{\prime}\right|_{y=b_{i}}=0
$$

A tight PoA bound

- Player i best responds by selecting the bid that nullifies the utility derivative:

$$
\begin{aligned}
\left.\frac{\partial u_{i}\left(y, \boldsymbol{b}_{-i}\right)}{\partial y}\right|_{y=b_{i}}=0 & \left.\Leftrightarrow\left(\alpha_{i} \frac{y}{y+B_{-i}}-y\right)^{\prime}\right|_{y=b_{i}}=0 \\
& \left.\Leftrightarrow \alpha_{i} \frac{B_{-i}}{\left(y+B_{-i}\right)^{2}}\right|_{y=b_{i}}=1
\end{aligned}
$$

A tight PoA bound

- Player i best responds by selecting the bid that nullifies the utility derivative:

$$
\begin{aligned}
\left.\frac{\partial u_{i}\left(y, \boldsymbol{b}_{-i}\right)}{\partial y}\right|_{y=b_{i}}=0 & \left.\Leftrightarrow\left(\alpha_{i} \frac{y}{y+B_{-i}}-y\right)^{\prime}\right|_{y=b_{i}}=0 \\
& \left.\Leftrightarrow \alpha_{i} \frac{B_{-i}}{\left(y+B_{-i}\right)^{2}}\right|_{y=b_{i}}=1 \\
& \Leftrightarrow B^{2}=\alpha_{i} B_{-i}
\end{aligned}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
u_{i}(\boldsymbol{b})=\alpha_{i} \frac{b_{i}}{B}-b_{i}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i}
\end{aligned}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i} \quad B^{2}=\alpha_{i} B_{-i} \Leftrightarrow B_{-i}=\frac{B^{2}}{\alpha_{i}}
\end{aligned}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i} \quad B^{2}=\alpha_{i} B_{-i} \Leftrightarrow B_{-i}=\frac{B^{2}}{\alpha_{i}} \\
& =\alpha_{i}-2 B+\frac{B^{2}}{\alpha_{i}}
\end{aligned}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{array}{rlr}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i} & B^{2}=\alpha_{i} B_{-i} \Leftrightarrow B_{-i}=\frac{B^{2}}{\alpha_{i}} \\
& =\alpha_{i}-2 B+\frac{B^{2}}{\alpha_{i}} & \forall \alpha, \beta: \alpha-2 \beta+\frac{\beta^{2}}{\alpha} \geq \frac{3}{4} \alpha-\beta
\end{array}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i} \\
& =\alpha_{i}-2 B+\frac{B^{2}}{\alpha_{i}} \\
& \geq \frac{3}{4} \alpha_{i}-B
\end{aligned}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{array}{rlr}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i} & B^{2}=\alpha_{i} B_{-i} \Leftrightarrow B_{-i}=\frac{B^{2}}{\alpha_{i}} \\
& =\alpha_{i}-2 B+\frac{B^{2}}{\alpha_{i}} & \forall \alpha, \beta: \alpha-2 \beta+\frac{\beta^{2}}{\alpha} \geq \frac{3}{4} \alpha-\beta \\
& \geq \frac{3}{4} \alpha_{i}-B & \\
& x_{i} \leq 1, v_{i}\left(x_{i}\right)=\alpha_{i} x_{i}
\end{array}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{array}{rlr}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} & \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i} & B^{2}=\alpha_{i} B_{-i} \Leftrightarrow B_{-i}=\frac{B^{2}}{\alpha_{i}} \\
& =\alpha_{i}-2 B+\frac{B^{2}}{\alpha_{i}} & \forall \alpha, \beta: \alpha-2 \beta+\frac{\beta^{2}}{\alpha} \geq \frac{3}{4} \alpha-\beta \\
& \geq \frac{3}{4} \alpha_{i}-B & \\
& \geq \frac{3}{4} v_{i}\left(x_{i}\right)-x_{i} B &
\end{array}
$$

A tight PoA bound

- Now, we can lower bound the utility of player i :

$$
\begin{array}{rlr}
u_{i}(\boldsymbol{b}) & =\alpha_{i} \frac{b_{i}}{B}-b_{i} & \\
& =\alpha_{i} \frac{B-B_{-i}}{B}-B+B_{-i} & B^{2}=\alpha_{i} B_{-i} \Leftrightarrow B_{-i}=\frac{B^{2}}{\alpha_{i}} \\
& =\alpha_{i}-2 B+\frac{B^{2}}{\alpha_{i}} & \forall \alpha, \beta: \alpha-2 \beta+\frac{\beta^{2}}{\alpha} \geq \frac{3}{4} \alpha-\beta \\
& \geq \frac{3}{4} \alpha_{i}-B & \\
& \geq \frac{3}{4} v_{i}\left(x_{i}\right)-x_{i} B &
\end{array}
$$

- If $\frac{3}{4} \alpha_{i}-B<0$, the inequality holds trivially

A tight PoA bound

- Definition of social welfare at equilibrium:

$$
\begin{aligned}
\mathrm{SW}(\boldsymbol{d}) & =\sum_{i \in N} v_{i}\left(d_{i}\right)=\sum_{i \in N}\left(u_{i}(\boldsymbol{b})+b_{i}\right) u_{i}(\boldsymbol{b}) \geq \frac{3}{4} v_{i}\left(x_{i}\right)-x_{i} B \\
& \geq \sum_{i \in N}\left(\frac{3}{4} v_{i}\left(x_{i}\right)-x_{i} B\right)+B \\
& =\frac{3}{4} \sum_{i \in N} v_{i}\left(x_{i}\right)-B \sum_{i \in N} x_{i}+B \quad \sum_{i \in N} x_{i}=1 \\
& \geq \frac{3}{4} \operatorname{SW}\left(\boldsymbol{d}_{\boldsymbol{O P T}}\right) \\
\Rightarrow \mathrm{POA} & \leq \frac{4}{3}
\end{aligned}
$$

Summary

Summary

- Setting: one divisible resource, players with concave valuation functions

Summary

- Setting: one divisible resource, players with concave valuation functions
- The game: each player submits a bid, receives a proportional-to-thebid fraction of the resource, and pays her bid

Summary

- Setting: one divisible resource, players with concave valuation functions
- The game: each player submits a bid, receives a proportional-to-thebid fraction of the resource, and pays her bid
- Utility of a player: value for her resource fraction minus payment

Summary

- Setting: one divisible resource, players with concave valuation functions
- The game: each player submits a bid, receives a proportional-to-thebid fraction of the resource, and pays her bid
- Utility of a player: value for her resource fraction minus payment
- Best response computation: nullify the utility derivative, or set to zero if utility derivative is negative

Summary

- Setting: one divisible resource, players with concave valuation functions
- The game: each player submits a bid, receives a proportional-to-thebid fraction of the resource, and pays her bid
- Utility of a player: value for her resource fraction minus payment
- Best response computation: nullify the utility derivative, or set to zero if utility derivative is negative
- There is a unique pure equilibrium

Summary

- Setting: one divisible resource, players with concave valuation functions
- The game: each player submits a bid, receives a proportional-to-thebid fraction of the resource, and pays her bid
- Utility of a player: value for her resource fraction minus payment
- Best response computation: nullify the utility derivative, or set to zero if utility derivative is negative
- There is a unique pure equilibrium
- Price of stability = price of anarchy

Summary

- Setting: one divisible resource, players with concave valuation functions
- The game: each player submits a bid, receives a proportional-to-thebid fraction of the resource, and pays her bid
- Utility of a player: value for her resource fraction minus payment
- Best response computation: nullify the utility derivative, or set to zero if utility derivative is negative
- There is a unique pure equilibrium
- Price of stability = price of anarchy
- Worst case for PoA: all players have linear valuation functions

Summary

- Setting: one divisible resource, players with concave valuation functions
- The game: each player submits a bid, receives a proportional-to-thebid fraction of the resource, and pays her bid
- Utility of a player: value for her resource fraction minus payment
- Best response computation: nullify the utility derivative, or set to zero if utility derivative is negative
- There is a unique pure equilibrium
- Price of stability = price of anarchy
- Worst case for PoA: all players have linear valuation functions
- The price of anarchy is at most $4 / 3$ and this bound is tight

Some further readings

- Efficiency loss in a network resource allocation game
- R. Johari and J. N. Tsitsiklis
- Mathematics of Operations Research, vol. 29(3):407-435, 2004
- Optimal allocation of a divisible good to strategic buyers
- S. Sanghavi and B. Hajek
- Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), 2004
- Efficiency of scalar-parameterized mechanisms
- R. Johari and J. N. Tsitsiklis
- Operations Research, vol. 57(4):823-839, 2009
- Welfare guarantees for proportional allocations
- I. Caragiannis and A. A. Voudouris
- Theory of Computing Systems, vol. 59(4):581-599, 2016

