Mechanism design: Single-parameter environments

Alexandros Voudouris
University of Oxford

Single-item auctions

- A seller with one item for sale
- n agents

Single-item auctions

- A seller with one item for sale
- n agents
- Each agent i has a private value v_{i} for the item
- This value represents the willingness-to-pay of the agent; that is, v_{i} is the maximum amount of money that agent i is willing to pay in order to buy the item

Single-item auctions

- A seller with one item for sale
- n agents
- Each agent i has a private value v_{i} for the item
- This value represents the willingness-to-pay of the agent; that is, v_{i} is the maximum amount of money that agent i is willing to pay in order to buy the item
- The utility of each agent is quasilinear in money:
- If agent i loses the item, then her utility is 0
- If agent i wins the item at price p, then her utility is $v_{i}-p$

Single-item auctions

- General structure of an auction:
- Input: every agent i submits a bid b_{i} (agents = bidders)
- Allocation rule: decide the winner
- Payment rule: decide a selling price

Single-item auctions

- General structure of an auction:
- Input: every agent i submits a bid b_{i} (agents = bidders)
- Allocation rule: decide the winner
- Payment rule: decide a selling price
- Deciding the winner is easy: the highest bidder

Single-item auctions

- General structure of an auction:
- Input: every agent i submits a bid b_{i} (agents = bidders)
- Allocation rule: decide the winner
- Payment rule: decide a selling price
- Deciding the winner is easy: the highest bidder
- Deciding the selling price is more complicated

Single-item auctions

- General structure of an auction:
- Input: every agent i submits a bid b_{i} (agents = bidders)
- Allocation rule: decide the winner
- Payment rule: decide a selling price
- Deciding the winner is easy: the highest bidder
- Deciding the selling price is more complicated
- A selling price of 0 , creates a competition among the bidders as to who can think of the highest number

Single-item auctions

- General structure of an auction:
- Input: every agent i submits a bid b_{i} (agents = bidders)
- Allocation rule: decide the winner
- Payment rule: decide a selling price
- Deciding the winner is easy: the highest bidder
- Deciding the selling price is more complicated
- A selling price of 0 , creates a competition among the bidders as to who can think of the highest number
- We are interested in payment rules that incentivize the bidders to bid their true values

Single-item auctions

- General structure of an auction:
- Input: every agent i submits a bid b_{i} (agents = bidders)
- Allocation rule: decide the winner
- Payment rule: decide a selling price
- Deciding the winner is easy: the highest bidder
- Deciding the selling price is more complicated
- A selling price of 0 , creates a competition among the bidders as to who can think of the highest number
- We are interested in payment rules that incentivize the bidders to bid their true values
- Truthful auctions that maximize the social welfare

First-price auction

- Allocation rule: the winner is the highest bidder
- Payment rule: the winner pays her bid

First-price auction

- Allocation rule: the winner is the highest bidder
- Payment rule: the winner pays her bid
- Is this a truthful auction?

First-price auction

- Allocation rule: the winner is the highest bidder
- Payment rule: the winner pays her bid
- Is this a truthful auction?

First-price auction

- Allocation rule: the winner is the highest bidder
- Payment rule: the winner pays her bid
- Is this a truthful auction?

Second-price auction

- Allocation rule: the winner is the highest bidder
- Payment rule: the winner pays the second highest bid

Second-price auction

- Allocation rule: the winner is the highest bidder
- Payment rule: the winner pays the second highest bid

Theorem [Vickrey, 1961]
In a second-price auction
(a) it is a dominant strategy for every bidder i to bid $b_{i}=v_{i}$, and
(b) every truthtelling bidder gets non-negative utility

Second-price auction

- Allocation rule: the winner is the highest bidder
- Payment rule: the winner pays the second highest bid

Theorem [Vickrey, 1961]
In a second-price auction
(a) it is a dominant strategy for every bidder i to bid $b_{i}=v_{i}$, and
(b) every truthtelling bidder gets non-negative utility

- (b) is obvious:
- the selling price is at most the winner's bid, and the bid of a truthtelling bidder is equal to her true value

Second-price auction

- For (a), our goal is to show that the utility of bidder i is maximized by bidding v_{i}, no matter what v_{i} and the bids of the other bidders are

Second-price auction

- For (a), our goal is to show that the utility of bidder i is maximized by bidding v_{i}, no matter what v_{i} and the bids of the other bidders are
- Second highest bid: $B=\max _{j \neq i} b_{j}$
- The utility of bidder i is either 0 if $b_{i}<B$, or $v_{i}-B$ otherwise

Second-price auction

- For (a), our goal is to show that the utility of bidder i is maximized by bidding v_{i}, no matter what v_{i} and the bids of the other bidders are
- Second highest bid: $B=\max _{j \neq i} b_{j}$
- The utility of bidder i is either 0 if $b_{i}<B$, or $v_{i}-B$ otherwise

Case I: $\boldsymbol{v}_{\boldsymbol{i}}<B$

- Maximum possible utility $=0$
- Achieved by setting $b_{i}=v_{i}$

Second-price auction

- For (a), our goal is to show that the utility of bidder i is maximized by bidding v_{i}, no matter what v_{i} and the bids of the other bidders are
- Second highest bid: $B=\max _{j \neq i} b_{j}$
- The utility of bidder i is either 0 if $b_{i}<B$, or $v_{i}-B$ otherwise

Case I: $\boldsymbol{v}_{\boldsymbol{i}}<B$

- Maximum possible utility $=0$
- Achieved by setting $b_{i}=v_{i}$

Case II: $\boldsymbol{v}_{\boldsymbol{i}} \geq B$

- Maximum possible utility $=v_{i}-B$
- Bidder i wins the item by setting $b_{i}=v_{i}$

Sponsored search auctions

Google

```
buy a computer
```



```
About \(4,510,000,000\) results ( 0.72 seconds)
PCSpecialist | Buy your New Computer | PCSpecialist.co.uk [Ad www.pcspecialist.co.uk/
あ丸ᄎᄎᄎ Rating for pcspecialist.co.uk: 4.8-774 reviews
Configure your new custom computer to your exact requirements. Next day PCs also available!
\begin{tabular}{ll} 
All-In-One Computers & Game-Based Computers \\
Choose from Our Range of Intel - & View Our Recommendations for PCs \\
Based AIO PC Systems. & Based on Your Favourite Games.
\end{tabular}
Dell PC Servers | Powered By Intel Xeon | dell.com
Ad www.dell.com/ • 03332580993
Designed To Handle The Most Demanding Technical Computing Workloads. Buy Now! Scalability. Dell Business Advisor - Dell Storage Solutions - Dell Servers - Dell Networking Solutions
Buy a PC with Cyberpower UK | Finance Options
(Ad) www.cyberpowersystem.co.uk) 03333237776
Custom Build Your Ultimate Gaming Desktop Or Pick Up One That We've Pre-Built. Save On High...
Desktop PCs at PC World | Free Delivery On All Orders | PCWorld.co.uk
(Ad) www.pcworld.co.uk/Desktops -
Collect In-Store Available. Fast \& Secure Checkout. Intel® Core \({ }^{\text {TM }}\) Processors Inside.
```


Sponsored search auctions

- k advertising slots
- n bidders (advertisers) who aim to occupy a slot

Sponsored search auctions

- k advertising slots
- n bidders (advertisers) who aim to occupy a slot
- Slot j has a click-through-rate (CTR) a_{j}
- The CTR of a slot represents the probability that the ad placed at this slot will be clicked on
- Assumption: the CTRs are independent of the ads that occupy the slots

Sponsored search auctions

- k advertising slots
- n bidders (advertisers) who aim to occupy a slot
- Slot j has a click-through-rate (CTR) a_{j}
- The CTR of a slot represents the probability that the ad placed at this slot will be clicked on
- Assumption: the CTRs are independent of the ads that occupy the slots
- The slots are ranked so that $a_{1} \geq \cdots \geq a_{k}$

Sponsored search auctions

- k advertising slots
- n bidders (advertisers) who aim to occupy a slot
- Slot j has a click-through-rate (CTR) a_{j}
- The CTR of a slot represents the probability that the ad placed at this slot will be clicked on
- Assumption: the CTRs are independent of the ads that occupy the slots
- The slots are ranked so that $a_{1} \geq \cdots \geq a_{k}$
- Each bidder i has a private value v_{i} per click
- Bidder i derives utility $a_{j} \cdot v_{i}$ from slot j

Sponsored search auctions: goals

- Truthfulness: It is a dominant strategy for each bidder to bid her true value
- Social welfare maximization: $\sum_{i} v_{i} \cdot x_{i}$
$-x_{i}$ is the CTR of the slot that bidder i is assigned to, or 0 otherwise
- Poly-time execution: running the auction should be quick

Sponsored search auctions: goals

- Truthfulness: It is a dominant strategy for each bidder to bid her true value
- Social welfare maximization: $\sum_{i} v_{i} \cdot x_{i}$
$-x_{i}$ is the CTR of the slot that bidder i is assigned to, or 0 otherwise
- Poly-time execution: running the auction should be quick
- If the bidders are truthful, then maximizing the social welfare is easy: sort the bidders in decreasing order of their bids
- So, the problem is to incentivize them to be truthful, again

Sponsored search auctions: goals

- Truthfulness: It is a dominant strategy for each bidder to bid her true value
- Social welfare maximization: $\sum_{i} v_{i} \cdot x_{i}$
$-x_{i}$ is the CTR of the slot that bidder i is assigned to, or 0 otherwise
- Poly-time execution: running the auction should be quick
- If the bidders are truthful, then maximizing the social welfare is easy: sort the bidders in decreasing order of their bids
- So, the problem is to incentivize them to be truthful, again
- Can we extend the ideas we exploited for single-item auctions?

Generalized second-price auction

- Allocation rule: sort the bidders in decreasing order of their bids and rename them so that $b_{1} \geq \cdots \geq b_{n}$
- Payment rule: every bidder $i \leq k$ (who is assigned at slot i) pays the next highest bid b_{i+1} per click, and every bidder $i>k$ pays 0

Generalized second-price auction

- Allocation rule: sort the bidders in decreasing order of their bids and rename them so that $b_{1} \geq \cdots \geq b_{n}$
- Payment rule: every bidder $i \leq k$ (who is assigned at slot i) pays the next highest bid b_{i+1} per click, and every bidder $i>k$ pays 0

Generalized second-price auction

- Allocation rule: sort the bidders in decreasing order of their bids and rename them so that $b_{1} \geq \cdots \geq b_{n}$
- Payment rule: every bidder $i \leq k$ (who is assigned at slot i) pays the next highest bid b_{i+1} per click, and every bidder $i>k$ pays 0

Generalized second-price auction

- Allocation rule: sort the bidders in decreasing order of their bids and rename them so that $b_{1} \geq \cdots \geq b_{n}$
- Payment rule: every bidder $i \leq k$ (who is assigned at slot i) pays the next highest bid b_{i+1} per click, and every bidder $i>k$ pays 0

Myerson's Lemma

- That didn't work for sponsored search auctions, so what now?

Myerson's Lemma

- That didn't work for sponsored search auctions, so what now?
- Let's try to see how the optimal truthful auction should look like, for any single parameter environment

Myerson's Lemma

- That didn't work for sponsored search auctions, so what now?
- Let's try to see how the optimal truthful auction should look like, for any single parameter environment
- Input by bidders: $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$
- Allocation rule: $\boldsymbol{x}(\boldsymbol{b})=\left(x_{1}(\boldsymbol{b}), \ldots, x_{n}(\boldsymbol{b})\right)$
- Payment rule: $\boldsymbol{p}(\boldsymbol{b})=\left(p_{1}(\boldsymbol{b}), \ldots, p_{n}(\boldsymbol{b})\right)$
- The utility of bidder i is $u_{i}(\boldsymbol{b})=v_{i} \cdot x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$

Myerson's Lemma

- That didn't work for sponsored search auctions, so what now?
- Let's try to see how the optimal truthful auction should look like, for any single parameter environment
- Input by bidders: $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$
- Allocation rule: $\boldsymbol{x}(\boldsymbol{b})=\left(x_{1}(\boldsymbol{b}), \ldots, x_{n}(\boldsymbol{b})\right)$
- Payment rule: $\boldsymbol{p}(\boldsymbol{b})=\left(p_{1}(\boldsymbol{b}), \ldots, p_{n}(\boldsymbol{b})\right)$
- The utility of bidder i is $u_{i}(\boldsymbol{b})=v_{i} \cdot x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$
- Focus on payment rules such that $p_{i}(\boldsymbol{b}) \in\left[0, b_{i} \cdot x_{i}(\boldsymbol{b})\right]$
- $p_{i}(\boldsymbol{b}) \geq 0$ ensures that the seller does not pay the bidders
$-p_{i}(\boldsymbol{b}) \leq b_{i} \cdot x_{i}(\boldsymbol{b})$ ensures non-negative utility for truthful bidders

Myerson's Lemma

- An allocation rule \boldsymbol{x} is implementable if there exists a payment rule \boldsymbol{p} such that $(\boldsymbol{x}, \boldsymbol{p})$ is a truthful auction

Myerson's Lemma

- An allocation rule \boldsymbol{x} is implementable if there exists a payment rule \boldsymbol{p} such that $(\boldsymbol{x}, \boldsymbol{p})$ is a truthful auction
- An allocation rule \boldsymbol{x} is monotone if for every bidder i and bid vector \boldsymbol{b}_{-i}, the allocation $x_{i}\left(z, \boldsymbol{b}_{-i}\right)$ is non-decreasing in the bid z of bidder i

Myerson's Lemma

- An allocation rule \boldsymbol{x} is implementable if there exists a payment rule \boldsymbol{p} such that $(\boldsymbol{x}, \boldsymbol{p})$ is a truthful auction
- An allocation rule \boldsymbol{x} is monotone if for every bidder i and bid vector \boldsymbol{b}_{-i}, the allocation $x_{i}\left(z, \boldsymbol{b}_{-i}\right)$ is non-decreasing in the bid z of bidder i

Lemma [Myerson, 1981]
(a) An allocation rule \boldsymbol{x} is implementable if and only if it is monotone
(b) For every allocation rule \boldsymbol{x}, there exists a unique payment rule \boldsymbol{p} such that $(\boldsymbol{x}, \boldsymbol{p})$ is a truthful auction

Proof of Myerson's Lemma

- Fix a bidder i, and the bids \boldsymbol{b}_{-i} of the other bidders
- Given that these quantities are now fixed, we simplify our notation:
$-x(z)=x_{i}\left(z, \boldsymbol{b}_{-i}\right)$
$-p(z)=p_{i}\left(z, \boldsymbol{b}_{-i}\right)$
$-u(z)=u_{i}\left(z, \boldsymbol{b}_{-i}\right)$

Proof of Myerson's Lemma

- Fix a bidder i, and the bids \boldsymbol{b}_{-i} of the other bidders
- Given that these quantities are now fixed, we simplify our notation:
$-x(z)=x_{i}\left(z, \boldsymbol{b}_{-i}\right)$
$-p(z)=p_{i}\left(z, \boldsymbol{b}_{-i}\right)$
$-u(z)=u_{i}\left(z, \boldsymbol{b}_{-i}\right)$
- The idea:
- assuming ($\boldsymbol{x}, \boldsymbol{p}$) is a truthful auction, the bidder has no incentive to unilaterally deviate to any other bid
- This will give us a relation between \boldsymbol{x} and \boldsymbol{p}, which we can use to derive an explicit formula for \boldsymbol{p} as a function of \boldsymbol{x}

Proof of Myerson's Lemma

- Consider two bids $0 \leq z<y$ and assume \boldsymbol{x} is implementable by \boldsymbol{p}

Proof of Myerson's Lemma

- Consider two bids $0 \leq z<y$ and assume \boldsymbol{x} is implementable by \boldsymbol{p}
- True value $=z$, deviating bid $=y$:

$$
u(z) \geq u(y)
$$

Proof of Myerson's Lemma

- Consider two bids $0 \leq z<y$ and assume \boldsymbol{x} is implementable by \boldsymbol{p}
- True value $=z$, deviating bid $=y$:

$$
u(z) \geq u(y) \Leftrightarrow z \cdot x(z)-p(z) \geq z \cdot x(y)-p(y)
$$

Proof of Myerson's Lemma

- Consider two bids $0 \leq z<y$ and assume \boldsymbol{x} is implementable by \boldsymbol{p}
- True value $=z$, deviating bid $=y$:

$$
\begin{aligned}
u(z) \geq u(y) & \Leftrightarrow z \cdot x(z)-p(z) \geq z \cdot x(y)-p(y) \\
& \Leftrightarrow p(y)-p(z) \geq z \cdot(x(y)-x(z))
\end{aligned}
$$

Proof of Myerson's Lemma

- Consider two bids $0 \leq z<y$ and assume \boldsymbol{x} is implementable by \boldsymbol{p}
- True value $=z$, deviating bid $=y$:

$$
\begin{aligned}
u(z) \geq u(y) & \Leftrightarrow z \cdot x(z)-p(z) \geq z \cdot x(y)-p(y) \\
& \Leftrightarrow p(y)-p(z) \geq z \cdot(x(y)-x(z))
\end{aligned}
$$

- True value $=y_{\text {, }}$ deviating bid $=z$:

$$
\begin{aligned}
u(y) \geq u(z) & \Leftrightarrow y \cdot x(y)-p(y) \geq y \cdot x(z)-p(z) \\
& \Leftrightarrow p(y)-p(z) \leq y \cdot(x(y)-x(z))
\end{aligned}
$$

Proof of Myerson's Lemma

- Combining these two, we get:

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

Proof of Myerson's Lemma

- Combining these two, we get:

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

- This also implies that

$$
(y-z) \cdot(x(y)-x(z)) \geq 0
$$

Proof of Myerson's Lemma

- Combining these two, we get:

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

- This also implies that

$$
(y-z) \cdot(x(y)-x(z)) \geq 0
$$

- Since $0 \leq z<y$, this is possible if and only if \boldsymbol{x} is monotone so that $y-z \leq 0$ and $x(y)-x(z) \leq 0$

Proof of Myerson's Lemma

- Combining these two, we get:

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

- This also implies that

$$
(y-z) \cdot(x(y)-x(z)) \geq 0
$$

- Since $0 \leq z<y$, this is possible if and only if \boldsymbol{x} is monotone so that $y-z \leq 0$ and $x(y)-x(z) \leq 0$
$\Rightarrow(\mathrm{a})$ is now proved

Proof of Myerson's Lemma

- We can now assume that \boldsymbol{x} is monotone

Proof of Myerson's Lemma

- We can now assume that \boldsymbol{x} is monotone
- Assume \boldsymbol{x} is piecewise constant, like in sponsored search auctions

- The break points are defined by the highest bids of the other bidders

Proof of Myerson's Lemma

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

Proof of Myerson's Lemma

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

- By fixing z and taking the limit as y tends to z, we have that

$$
\text { jump of } p \text { at } z=z \cdot \text { (jump of } x \text { at } z \text {) }
$$

Proof of Myerson's Lemma

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

- By fixing z and taking the limit as y tends to z, we have that

$$
\text { jump of } p \text { at } z=z \cdot \text { (jump of } x \text { at } z \text {) }
$$

- Therefore, we can define the payment of the bidder as

$$
p(b)=\sum_{y \in[0, b]} y \cdot(\text { jump of } x \text { at } y)
$$

where y enumerates all break points of x in $[0, b]$

Proof of Myerson's Lemma

- Example:

$p(b)=\sum_{y \in[0, b]} y \cdot($ jump of x at $y)$

Proof of Myerson's Lemma

- Example:

$p(b)=\sum_{y \in[0, b]} y \cdot($ jump of x at $y)=y_{1} \cdot x_{1}$

Proof of Myerson's Lemma

- Example:

$$
p(b)=\sum_{y \in[0, b]} y \cdot(\text { jump of } x \text { at } y)=y_{1} \cdot x_{1}+y_{2} \cdot\left(x_{2}-x_{1}\right)
$$

Proof of Myerson's Lemma

Proof of Myerson's Lemma

Proof of Myerson's Lemma

Sponsored search auctions

$$
p(b)=\sum_{y \in[0, b]} y \cdot(\text { jump of } x \text { at } y)
$$

Sponsored search auctions

$$
p(b)=\sum_{y \in[0, b]} y \cdot \text { (jump of } x \text { at } y \text {) }
$$

- y enumerates the break points: the bids that are smaller than b
- In other words, y enumerates the slots from worst to best

Sponsored search auctions

$$
p(b)=\sum_{y \in[0, b]} y \cdot \text { (jump of } x \text { at } y \text {) }
$$

- y enumerates the break points: the bids that are smaller than b
- In other words, y enumerates the slots from worst to best
- jump of x at y : the difference in CTR between two consecutive slots

Sponsored search auctions

$$
p(b)=\sum_{y \in[0, b]} y \cdot(\text { jump of } x \text { at } y)
$$

- y enumerates the break points: the bids that are smaller than b
- In other words, y enumerates the slots from worst to best
- jump of x at y : the difference in CTR between two consecutive slots
- The total payment of the i-th highest bidder is:

$$
p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\sum_{j=i}^{k} b_{j+1}\left(a_{j}-a_{j+1}\right)
$$

Summary

Summary

- Auctions: allocation rule + payment rule

Summary

- Auctions: allocation rule + payment rule
- An allocation rule is implementable is there exists a payment rule, so that together they define a truthful auction

Summary

- Auctions: allocation rule + payment rule
- An allocation rule is implementable is there exists a payment rule, so that together they define a truthful auction
- An allocation rule is monotone, if larger bids give more stuff

Summary

- Auctions: allocation rule + payment rule
- An allocation rule is implementable is there exists a payment rule, so that together they define a truthful auction
- An allocation rule is monotone, if larger bids give more stuff
- Single-item auctions: first-price is not truthful, second-price is truthful and maximizes the social welfare (sells to the bidder with the highest value)

Summary

- Auctions: allocation rule + payment rule
- An allocation rule is implementable is there exists a payment rule, so that together they define a truthful auction
- An allocation rule is monotone, if larger bids give more stuff
- Single-item auctions: first-price is not truthful, second-price is truthful and maximizes the social welfare (sells to the bidder with the highest value)
- Sponsored search auctions: generalized second-price auction is not truthful

Summary

- Auctions: allocation rule + payment rule
- An allocation rule is implementable is there exists a payment rule, so that together they define a truthful auction
- An allocation rule is monotone, if larger bids give more stuff
- Single-item auctions: first-price is not truthful, second-price is truthful and maximizes the social welfare (sells to the bidder with the highest value)
- Sponsored search auctions: generalized second-price auction is not truthful
- Myerson's Lemma: a characterization of truthful mechanisms in single-parameter environments

Summary

- Auctions: allocation rule + payment rule
- An allocation rule is implementable is there exists a payment rule, so that together they define a truthful auction
- An allocation rule is monotone, if larger bids give more stuff
- Single-item auctions: first-price is not truthful, second-price is truthful and maximizes the social welfare (sells to the bidder with the highest value)
- Sponsored search auctions: generalized second-price auction is not truthful
- Myerson's Lemma: a characterization of truthful mechanisms in single-parameter environments
- Using Myerson's Lemma we can design a truthful sponsored search auction

