Mechanism design: Multi-parameter environments

Alexandros Voudouris
University of Oxford

General environments

- A set of n agents
- A finite set Ω of outcomes

General environments

- A set of n agents
- A finite set Ω of outcomes
- Each agent i has a private non-negative value $v_{i}(\omega)$ for every outcome $\omega \in \Omega$

General environments

- A set of n agents
- A finite set Ω of outcomes
- Each agent i has a private non-negative value $v_{i}(\omega)$ for every outcome $\omega \in \Omega$
- The social welfare of an outcome $\omega \in \Omega$ is $\sum_{i} v_{i}(\omega)$

General environments

- A set of n agents
- A finite set Ω of outcomes
- Each agent i has a private non-negative value $v_{i}(\omega)$ for every outcome $\omega \in \Omega$
- The social welfare of an outcome $\omega \in \Omega$ is $\sum_{i} v_{i}(\omega)$
- Our goals:
- Incentivize the agents to truthfully report their values
- Choose an outcome that maximizes the social welfare

Single-item auctions

- There are only $n+1$ outcomes, corresponding to the number of possible winners (if any)

Single-item auctions

- There are only $n+1$ outcomes, corresponding to the number of possible winners (if any)
- In the standard model, the value of each agent is 0 in all n outcomes in which she loses

Single-item auctions

- There are only $n+1$ outcomes, corresponding to the number of possible winners (if any)
- In the standard model, the value of each agent is 0 in all n outcomes in which she loses
- This leaves only one unknown parameter per agent, her value for the outcome in which she wins

Single-item auctions

- There are only $n+1$ outcomes, corresponding to the number of possible winners (if any)
- In the standard model, the value of each agent is 0 in all n outcomes in which she loses
- This leaves only one unknown parameter per agent, her value for the outcome in which she wins
- In general, the agents might have different values for the possible winners of the item

Combinatorial auctions

- Multiple indivisible items for sale

Combinatorial auctions

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations

Combinatorial auctions

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $\left(X_{1}, \ldots, X_{n}\right)$ such that $\bigcup_{i} X_{i} \subseteq M$ and $X_{i} \cap X_{j}=\emptyset, \forall i \neq j$

Combinatorial auctions

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $\left(X_{1}, \ldots, X_{n}\right)$ such that $\mathrm{U}_{i} X_{i} \subseteq M$ and $X_{i} \cap X_{j}=\emptyset, \forall i \neq j$
- There are $(n+1)^{m}$ different outcomes

Combinatorial auctions

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $\left(X_{1}, \ldots, X_{n}\right)$ such that $\bigcup_{i} X_{i} \subseteq M$ and $X_{i} \cap X_{j}=\emptyset, \forall i \neq j$
- There are $(n+1)^{m}$ different outcomes
- Each agent i has a private value $v_{i}(S)$ for every possible bundle $S \subseteq M$ of items

Combinatorial auctions

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $\left(X_{1}, \ldots, X_{n}\right)$ such that $\bigcup_{i} X_{i} \subseteq M$ and $X_{i} \cap X_{j}=\emptyset, \forall i \neq j$
- There are $(n+1)^{m}$ different outcomes
- Each agent i has a private value $v_{i}(S)$ for every possible bundle $S \subseteq M$ of items
- Each agent i has 2^{m} parameters

VCG mechanisms

- A general solution for any environment

VCG mechanisms

- A general solution for any environment
- The VCG (Vickrey-Clarke-Groves) mechanisms implement (truthfully) the social welfare maximizing outcome

VCG mechanisms

- A general solution for any environment
- The VCG (Vickrey-Clarke-Groves) mechanisms implement (truthfully) the social welfare maximizing outcome
- Allocation rule: Maximize the social welfare according to the input

$$
\boldsymbol{x}(\boldsymbol{b})=\arg \max _{\omega \in \Omega} \sum_{i} b_{i}(\omega)
$$

VCG mechanisms

- A general solution for any environment
- The VCG (Vickrey-Clarke-Groves) mechanisms implement (truthfully) the social welfare maximizing outcome
- Allocation rule: Maximize the social welfare according to the input

$$
\boldsymbol{x}(\boldsymbol{b})=\arg \max _{\omega \in \Omega} \sum_{i} b_{i}(\omega)
$$

- Payment rule: For a set of functions h_{1}, \ldots, h_{n} such that h_{i} is independent of the bid of agent i,

$$
p_{i}(\boldsymbol{b})=h_{i}\left(\boldsymbol{b}_{-i}\right)-\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))
$$

VCG mechanisms

Theorem
Every VCG mechanism is truthful and maximizes the social welfare

VCG mechanisms

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

- The utility of agent i is

$$
u_{i}(\boldsymbol{b})=v_{i}(\boldsymbol{x}(\boldsymbol{b}))-p_{i}(\boldsymbol{b})
$$

VCG mechanisms

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

- The utility of agent i is

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-p_{i}(\boldsymbol{b}) \\
& =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-\left(h_{i}\left(\boldsymbol{b}_{-i}\right)-\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))\right)
\end{aligned}
$$

VCG mechanisms

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

- The utility of agent i is

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-p_{i}(\boldsymbol{b}) \\
& =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-\left(h_{i}\left(\boldsymbol{b}_{-i}\right)-\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))\right) \\
& =v_{i}(\boldsymbol{x}(\boldsymbol{b}))+\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))-h_{i}\left(\boldsymbol{b}_{-i}\right)
\end{aligned}
$$

VCG mechanisms

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

- The utility of agent i is

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-p_{i}(\boldsymbol{b}) \\
& =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-\left(h_{i}\left(\boldsymbol{b}_{-i}\right)-\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))\right) \\
& =v_{i}(\boldsymbol{x}(\boldsymbol{b}))+\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b})) \underbrace{h_{i}\left(\boldsymbol{b}_{-i}\right)}_{\text {independent of } b_{i}}
\end{aligned}
$$

VCG mechanisms

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

- The utility of agent i is

$$
\begin{aligned}
u_{i}(\boldsymbol{b}) & =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-p_{i}(\boldsymbol{b}) \\
& =v_{i}(\boldsymbol{x}(\boldsymbol{b}))-\left(h_{i}\left(\boldsymbol{b}_{-i}\right)-\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))\right) \\
& =v_{i}(\boldsymbol{x}(\boldsymbol{b}))+\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))-\underbrace{h_{i}\left(\boldsymbol{b}_{-i}\right)}_{i}
\end{aligned}
$$

The social welfare according to the true value of agent i and the bids of the other agents

VCG mechanisms

- Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$
v_{i}(\boldsymbol{x}(\boldsymbol{b}))+\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))
$$

VCG mechanisms

- Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$
v_{i}(\boldsymbol{x}(\boldsymbol{b}))+\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))
$$

- Since $\boldsymbol{x}(\boldsymbol{b})$ is such that

$$
\boldsymbol{x}(\boldsymbol{b}) \in \arg \max _{\omega \in \Omega}\left\{b_{i}(\omega)+\sum_{j \neq i} b_{j}(\omega)\right\}
$$

the best response of agent i is to set $b_{i}=v_{i}$

VCG mechanisms

- Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$
v_{i}(\boldsymbol{x}(\boldsymbol{b}))+\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))
$$

- Since $\boldsymbol{x}(\boldsymbol{b})$ is such that

$$
\boldsymbol{x}(\boldsymbol{b}) \in \arg \max _{\omega \in \Omega}\left\{b_{i}(\omega)+\sum_{j \neq i} b_{j}(\omega)\right\}
$$

the best response of agent i is to set $b_{i}=v_{i}$

- Therefore every agent i truthfully reports her true values

VCG mechanisms

- Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$
v_{i}(\boldsymbol{x}(\boldsymbol{b}))+\sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))
$$

- Since $\boldsymbol{x}(\boldsymbol{b})$ is such that

$$
\boldsymbol{x}(\boldsymbol{b}) \in \arg \max _{\omega \in \Omega}\left\{b_{i}(\omega)+\sum_{j \neq i} b_{j}(\omega)\right\}
$$

the best response of agent i is to set $b_{i}=v_{i}$

- Therefore every agent i truthfully reports her true values
- The mechanism is designed so that the incentives of the agents are aligned with the goal of maximizing the social welfare

Clarke payments

- There are a lot of different VCG mechanisms, depending on how we choose the h-functions

Clarke payments

- There are a lot of different VCG mechanisms, depending on how we choose the h-functions
- We would like to have reasonable payment rules, that satisfy a couple of properties:
- Individual rationality: Every agent has non-negative utility, and therefore incentive to participate
- No positive transfers: The mechanism does not pay the agents, the agents pay the mechanism

Clarke payments

- Clarke payments: define

$$
h_{i}\left(\boldsymbol{v}_{-i}\right)=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)
$$

Clarke payments

- Clarke payments: define

$$
h_{i}\left(\boldsymbol{v}_{-i}\right)=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)
$$

and, hence

$$
p_{i}(\boldsymbol{v})=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)-\sum_{j \neq i} v_{j}(\boldsymbol{x}(\boldsymbol{v}))
$$

Clarke payments

- Clarke payments: define

$$
h_{i}\left(\boldsymbol{v}_{-i}\right)=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)
$$

and, hence

$$
p_{i}(\boldsymbol{v})=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)-\sum_{j \neq i} v_{j}(\boldsymbol{x}(\boldsymbol{v}))
$$

- The payment of agent i is the difference between the maximum social welfare of the other agents when she does not participate, and the social welfare when she participates
- Agent i pays the loss in welfare due to her participation

Clarke payments

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

Clarke payments

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

- No positive transfers:

$$
p_{i}(\boldsymbol{v})=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)-\sum_{j \neq i} v_{j}(\boldsymbol{x}(\boldsymbol{v})) \geq 0
$$

Clarke payments

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

- No positive transfers:

$$
p_{i}(\boldsymbol{v})=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)-\sum_{j \neq i} v_{j}(\boldsymbol{x}(\boldsymbol{v})) \geq 0
$$

- Individual rationality:

$$
u_{i}(\boldsymbol{v})=\sum_{j} v_{j}(\boldsymbol{x}(\boldsymbol{v}))-\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)
$$

Clarke payments

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

- No positive transfers:

$$
p_{i}(\boldsymbol{v})=\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)-\sum_{j \neq i} v_{j}(\boldsymbol{x}(\boldsymbol{v})) \geq 0
$$

- Individual rationality:

$$
\begin{aligned}
u_{i}(\boldsymbol{v}) & =\sum_{j} v_{j}(x(\boldsymbol{v}))-\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega) \\
& =\max _{\omega \in \Omega} \sum_{j} v_{j}(\omega)-\max _{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega) \geq 0
\end{aligned}
$$

Drawbacks of VCG mechanisms

- Preference elicitation: VCG mechanisms demand from each agent to communicate her values for every possible outcome
- Not practical in many situations: communicating 2^{m} parameters in the case of combinatorial auctions is impossible, even for small m

Drawbacks of VCG mechanisms

- Preference elicitation: VCG mechanisms demand from each agent to communicate her values for every possible outcome
- Not practical in many situations: communicating 2^{m} parameters in the case of combinatorial auctions is impossible, even for small m
- Social welfare maximization might be a hard problem
- Knapsack auctions:
- each agent i demands w_{i} items and has a private value v_{i}
- the seller has a total amount of W items
- Even though every agent has only one private parameter, maximizing the social welfare is equivalent to the Knapsack problem, which is NP-hard

